The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Sinorhizobium

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Sinorhizobium

 

High impact information on Sinorhizobium

  • Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of B12 [6].
  • We identified 46 sequences that are differentially expressed in plants exposed for 24 h to WT Sinorhizobium meliloti or to the invasion defective S. meliloti mutant, exoA [7].
  • The soil-dwelling alpha-proteobacterium Sinorhizobium meliloti engages in a symbiosis with legumes: S. meliloti elicits the formation of plant root nodules where it converts dinitrogen to ammonia for use by the plant in exchange for plant photosynthate [8].
  • We also analyzed the re-sequenced chvG and found that ChvG is more homologous to its Sinorhizobium meliloti counterpart ExoS than was previously thought [9].
  • Our analyses of lipopolysaccharide mutants of Sinorhizobium meliloti offer insights into how this bacterium establishes the chronic intracellular infection of plant cells that is necessary for its nitrogen-fixing symbiosis with alfalfa [10].
 

Chemical compound and disease context of Sinorhizobium

 

Biological context of Sinorhizobium

 

Gene context of Sinorhizobium

 

Analytical, diagnostic and therapeutic context of Sinorhizobium

  • Extractable proteins from Sinorhizobium meliloti strains AK631 and EK698 (a Tn5-induced noIR-deficient mutant of AK631), grown in tryptone agar (TA) medium with or without the addition of the plant signal luteolin, were separated by two-dimensional gel electrophoresis and compared [25].
  • Conserved PCR primers were designed from published sequences of repC; they amplified a fragment of about 750 bp from 39 out of 41 strains tested, and also from several Sinorhizobium strains, including S. meliloti [26].
  • Desiccation responses and survival of Sinorhizobium meliloti USDA 1021 in relation to growth phase, temperature, chloride and sulfate availability [27].

References

  1. Chimeric structure of the NAD(P)+- and NADP+-dependent malic enzymes of Rhizobium (Sinorhizobium) meliloti. Mitsch, M.J., Voegele, R.T., Cowie, A., Osteras, M., Finan, T.M. J. Biol. Chem. (1998) [Pubmed]
  2. Molecular cloning and characterization of cgt, the Brucella abortus cyclic beta-1,2-glucan transporter gene, and its role in virulence. Roset, M.S., Ciocchini, A.E., Ugalde, R.A., Iñón de Iannino, N. Infect. Immun. (2004) [Pubmed]
  3. Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively. Cuív, P.O., Clarke, P., Lynch, D., O'Connell, M. J. Bacteriol. (2004) [Pubmed]
  4. A novel Sinorhizobium meliloti operon encodes an alpha-glucosidase and a periplasmic-binding-protein-dependent transport system for alpha-glucosides. Willis, L.B., Walker, G.C. J. Bacteriol. (1999) [Pubmed]
  5. MotD of Sinorhizobium meliloti and related alpha-proteobacteria is the flagellar-hook-length regulator and therefore reassigned as FliK. Eggenhofer, E., Rachel, R., Haslbeck, M., Scharf, B. J. Bacteriol. (2006) [Pubmed]
  6. Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of B12. Campbell, G.R., Taga, M.E., Mistry, K., Lloret, J., Anderson, P.J., Roth, J.R., Walker, G.C. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  7. Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis. Mitra, R.M., Shaw, S.L., Long, S.R. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  8. A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Barnett, M.J., Toman, C.J., Fisher, R.F., Long, S.R. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  9. A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Li, L., Jia, Y., Hou, Q., Charles, T.C., Nester, E.W., Pan, S.Q. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  10. Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core. Campbell, G.R., Reuhs, B.L., Walker, G.C. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  11. Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: choline-O-sulfate is metabolized into glycine betaine. Osterås, M., Boncompagni, E., Vincent, N., Poggi, M.C., Le Rudulier, D. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  12. Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Bringhurst, R.M., Cardon, Z.G., Gage, D.J. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  13. Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. de Rudder, K.E., Sohlenkamp, C., Geiger, O. J. Biol. Chem. (1999) [Pubmed]
  14. Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. de Rudder, K.E., López-Lara, I.M., Geiger, O. Mol. Microbiol. (2000) [Pubmed]
  15. Structural determination of a 5-acetamido-3,5,7, 9-tetradeoxy-7-(3-hydroxybutyramido)-L-glycero-L-manno-nonulos onic acid-containing homopolysaccharide isolated from Sinorhizobium fredii HH103. Gil-Serrano, A.M., Rodríguez-Carvajal, M.A., Tejero-Mateo, P., Espartero, J.L., Menendez, M., Corzo, J., Ruiz-Sainz, J.E., BuendíA-Clavería, A.M. Biochem. J. (1999) [Pubmed]
  16. Sinorhizobium meliloti acpXL mutant lacks the C28 hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide. Sharypova, L.A., Niehaus, K., Scheidle, H., Holst, O., Becker, A. J. Biol. Chem. (2003) [Pubmed]
  17. The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Geiger, O., Röhrs, V., Weissenmayer, B., Finan, T.M., Thomas-Oates, J.E. Mol. Microbiol. (1999) [Pubmed]
  18. Proteome analysis demonstrates complex replicon and luteolin interactions in pSyma-cured derivatives of Sinorhizobium meliloti strain 2011. Chen, H., Higgins, J., Oresnik, I.J., Hynes, M.F., Natera, S., Djordjevic, M.A., Weinman, J.J., Rolfe, B.G. Electrophoresis (2000) [Pubmed]
  19. The disruption of a gene encoding a putative arylesterase impairs pyruvate dehydrogenase complex activity and nitrogen fixation in Sinorhizobium meliloti. Soto, M.J., Sanjuan, J., Olivares, J. Mol. Plant Microbe Interact. (2001) [Pubmed]
  20. Sequence Analysis of the 144-Kilobase Accessory Plasmid pSmeSM11a, Isolated from a Dominant Sinorhizobium meliloti Strain Identified during a Long-Term Field Release Experiment. Stiens, M., Schneiker, S., Keller, M., Kuhn, S., Pühler, A., Schlüter, A. Appl. Environ. Microbiol. (2006) [Pubmed]
  21. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens. Yuan, Z.C., Zaheer, R., Finan, T.M. Mol. Microbiol. (2005) [Pubmed]
  22. Expression of the apyrase-like APY1 genes in roots of Medicago truncatula is induced rapidly and transiently by stress and not by Sinorhizobium meliloti or Nod factors. Navarro-Gochicoa, M.T., Camut, S., Niebel, A., Cullimore, J.V. Plant Physiol. (2003) [Pubmed]
  23. Regulation of phosphate assimilation in Rhizobium (Sinorhizobium) meliloti. Bardin, S.D., Finan, T.M. Genetics (1998) [Pubmed]
  24. Citrate synthase mutants of Agrobacterium are attenuated in virulence and display reduced vir gene induction. Suksomtip, M., Liu, P., Anderson, T., Tungpradabkul, S., Wood, D.W., Nester, E.W. J. Bacteriol. (2005) [Pubmed]
  25. Identification of nolR-regulated proteins in Sinorhizobium meliloti using proteome analysis. Chen, H., Higgins, J., Kondorosi, E., Kondorosi, A., Djordjevic, M.A., Weinman, J.J., Rolfe, B.G. Electrophoresis (2000) [Pubmed]
  26. Diversity of repC plasmid-replication sequences in Rhizobium leguminosarum. Turner, S.L., Rigottier-Gois, L., Power, R.S., Amarger, N., Young, J.P. Microbiology (Reading, Engl.) (1996) [Pubmed]
  27. Desiccation responses and survival of Sinorhizobium meliloti USDA 1021 in relation to growth phase, temperature, chloride and sulfate availability. Vriezen, J.A., de Bruijn, F.J., Nüsslein, K. Lett. Appl. Microbiol. (2006) [Pubmed]
 
WikiGenes - Universities