The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Caveolae

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Caveolae

 

High impact information on Caveolae

  • The caveolin proteins (caveolin-1, -2, and -3) serve as the structural components of caveolae, while also functioning as scaffolding proteins, capable of recruiting numerous signaling molecules to caveolae, as well as regulating their activity [6].
  • The recent colocalization of the cationic amino acid transporter CAT-1 (system y(+)), nitric oxide synthase (eNOS), and caveolin-1 in endothelial plasmalemmal caveolae provides a novel mechanism for the regulation of NO production by L-arginine delivery and circulating hormones such insulin and 17beta-estradiol [7].
  • Caveolin-1, the primary coat protein of caveolae, has been implicated as a regulator of signal transduction through binding of its "scaffolding domain" to key signaling molecules [8].
  • Dynamin, a 100-kDa GTPase, is an essential component of vesicle formation in receptor-mediated endocytosis, synaptic vesicle recycling, caveolae internalization, and possibly vesicle trafficking in and out of the Golgi [9].
  • In this membrane, microinvaginations termed caveolae are organized in band-like domains, which were highly sensitive to filipin (and therefore cholesterol-rich) compared with the surrounding non-caveolar inter-band regions (assumed to be cholesterol-poor) [10].
 

Chemical compound and disease context of Caveolae

 

Biological context of Caveolae

 

Anatomical context of Caveolae

  • Human T-lymphocytes extended pseudopodia into endothelial cells in caveolin- and F-actin-enriched areas, induced local translocation of ICAM-1 and caveolin-1 to the endothelial basal membrane and transmigrated through transcellular passages formed by a ring of F-actin and caveolae [21].
  • Caveolin-1 is a protein component (of relative molecular mass 22, 000) of the striated coat that decorates the cytoplasmic surface of caveolae membranes [22].
  • We recently showed that human skin fibroblasts internalize fluorescent analogues of the glycosphingolipids lactosylceramide and globoside almost exclusively by a clathrin-independent mechanism involving caveolae [23].
  • Here, we further characterized the caveolar pathway for glycosphingolipids, showing that Golgi targeting of sphingolipids internalized via caveolae required microtubules and phosphoinositol 3-kinases and was inhibited in cells expressing dominant-negative Rab7 and Rab9 constructs [23].
  • Analysis of endothelium in vivo by subcellular fractionation and immunomicroscopy shows that dynamin is concentrated on caveolae, primarily at the expected site of action, their necks [24].
 

Associations of Caveolae with chemical compounds

  • These observations, which emphasize dependence on cell surface-associated receptors, provide evidence for the existence of a steroid receptor fast-action complex, or SRFC, in caveolae [25].
  • Immunogold electron microscopy showed that ganglioside GM1-enriched caveolae associated with an annular plasmalemmal domain enriched in GPI-anchored proteins [26].
  • These membrane fragments displayed light density on sucrose gradients characteristic of detergent insoluble glycosphingolipid-rich membrane domains (DIGs)/ caveolae, were solubilized by n-octyl glucoside (NOG, 1%) at 4 degrees C, and contained caveolin [27].
  • Uptake of caveolae and degradation of PrPC was slow and sensitive to filipin [28].
  • Introduction of Cys3 into p60src led to its palmitoylation. p59fyn but not p60src partitioned into Triton-insoluble complexes that contain caveolae, microinvaginations of the plasma membrane [29].
 

Gene context of Caveolae

 

Analytical, diagnostic and therapeutic context of Caveolae

References

  1. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. Damm, E.M., Pelkmans, L., Kartenbeck, J., Mezzacasa, A., Kurzchalia, T., Helenius, A. J. Cell Biol. (2005) [Pubmed]
  2. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. Lisanti, M.P., Scherer, P.E., Vidugiriene, J., Tang, Z., Hermanowski-Vosatka, A., Tu, Y.H., Cook, R.F., Sargiacomo, M. J. Cell Biol. (1994) [Pubmed]
  3. The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Matsuda, C., Hayashi, Y.K., Ogawa, M., Aoki, M., Murayama, K., Nishino, I., Nonaka, I., Arahata, K., Brown, R.H. Hum. Mol. Genet. (2001) [Pubmed]
  4. Escherichia coli K1 internalization via caveolae requires caveolin-1 and protein kinase Calpha interaction in human brain microvascular endothelial cells. Sukumaran, S.K., Quon, M.J., Prasadarao, N.V. J. Biol. Chem. (2002) [Pubmed]
  5. Impairment of caveolae formation and T-system disorganization in human muscular dystrophy with caveolin-3 deficiency. Minetti, C., Bado, M., Broda, P., Sotgia, F., Bruno, C., Galbiati, F., Volonte, D., Lucania, G., Pavan, A., Bonilla, E., Lisanti, M.P., Cordone, G. Am. J. Pathol. (2002) [Pubmed]
  6. Role of caveolae and caveolins in health and disease. Cohen, A.W., Hnasko, R., Schubert, W., Lisanti, M.P. Physiol. Rev. (2004) [Pubmed]
  7. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Mann, G.E., Yudilevich, D.L., Sobrevia, L. Physiol. Rev. (2003) [Pubmed]
  8. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Bucci, M., Gratton, J.P., Rudic, R.D., Acevedo, L., Roviezzo, F., Cirino, G., Sessa, W.C. Nat. Med. (2000) [Pubmed]
  9. Dynamin and its role in membrane fission. Hinshaw, J.E. Annu. Rev. Cell Dev. Biol. (2000) [Pubmed]
  10. Failure of filipin to detect cholesterol-rich domains in smooth muscle plasma membrane. Severs, N.J., Simons, H.L. Nature (1983) [Pubmed]
  11. Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Galphaq-coupled protein receptors. Bhatnagar, A., Sheffler, D.J., Kroeze, W.K., Compton-Toth, B., Roth, B.L. J. Biol. Chem. (2004) [Pubmed]
  12. Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus. Berryman, S., Clark, S., Monaghan, P., Jackson, T. J. Virol. (2005) [Pubmed]
  13. In situ prostate cancer gene therapy using a novel adenoviral vector regulated by the caveolin-1 promoter. Pramudji, C., Shimura, S., Ebara, S., Yang, G., Wang, J., Ren, C., Yuan, Y., Tahir, S.A., Timme, T.L., Thompson, T.C. Clin. Cancer Res. (2001) [Pubmed]
  14. Host signal transduction and endocytosis of Campylobacter jejuni. Wooldridge, K.G., Williams, P.H., Ketley, J.M. Microb. Pathog. (1996) [Pubmed]
  15. Molecular aspects of atherogenesis: new insights and unsolved questions. Puddu, G.M., Cravero, E., Arnone, G., Muscari, A., Puddu, P. J. Biomed. Sci. (2005) [Pubmed]
  16. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Roy, S., Luetterforst, R., Harding, A., Apolloni, A., Etheridge, M., Stang, E., Rolls, B., Hancock, J.F., Parton, R.G. Nat. Cell Biol. (1999) [Pubmed]
  17. Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Liu, P., Ying, Y., Anderson, R.G. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  18. Cyclooxygenase-2 inhibition sensitizes human colon carcinoma cells to TRAIL-induced apoptosis through clustering of DR5 and concentrating death-inducing signaling complex components into ceramide-enriched caveolae. Martin, S., Phillips, D.C., Szekely-Szucs, K., Elghazi, L., Desmots, F., Houghton, J.A. Cancer Res. (2005) [Pubmed]
  19. Insulin second messengers. Strålfors, P. Bioessays (1997) [Pubmed]
  20. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. Engelman, J.A., Wykoff, C.C., Yasuhara, S., Song, K.S., Okamoto, T., Lisanti, M.P. J. Biol. Chem. (1997) [Pubmed]
  21. Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Millán, J., Hewlett, L., Glyn, M., Toomre, D., Clark, P., Ridley, A.J. Nat. Cell Biol. (2006) [Pubmed]
  22. Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Liu, P., Li, W.P., Machleidt, T., Anderson, R.G. Nat. Cell Biol. (1999) [Pubmed]
  23. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. Choudhury, A., Dominguez, M., Puri, V., Sharma, D.K., Narita, K., Wheatley, C.L., Marks, D.L., Pagano, R.E. J. Clin. Invest. (2002) [Pubmed]
  24. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. Oh, P., McIntosh, D.P., Schnitzer, J.E. J. Cell Biol. (1998) [Pubmed]
  25. Estrogen modulation of endothelial nitric oxide synthase. Chambliss, K.L., Shaul, P.W. Endocr. Rev. (2002) [Pubmed]
  26. Separation of caveolae from associated microdomains of GPI-anchored proteins. Schnitzer, J.E., McIntosh, D.P., Dvorak, A.M., Liu, J., Oh, P. Science (1995) [Pubmed]
  27. Surface expression, polarization, and functional significance of CD73 in human intestinal epithelia. Strohmeier, G.R., Lencer, W.I., Patapoff, T.W., Thompson, L.F., Carlson, S.L., Moe, S.J., Carnes, D.K., Mrsny, R.J., Madara, J.L. J. Clin. Invest. (1997) [Pubmed]
  28. Trafficking of prion proteins through a caveolae-mediated endosomal pathway. Peters, P.J., Mironov, A., Peretz, D., van Donselaar, E., Leclerc, E., Erpel, S., DeArmond, S.J., Burton, D.R., Williamson, R.A., Vey, M., Prusiner, S.B. J. Cell Biol. (2003) [Pubmed]
  29. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. Shenoy-Scaria, A.M., Dietzen, D.J., Kwong, J., Link, D.C., Lublin, D.M. J. Cell Biol. (1994) [Pubmed]
  30. Caveolin-2 is targeted to lipid droplets, a new "membrane domain" in the cell. Fujimoto, T., Kogo, H., Ishiguro, K., Tauchi, K., Nomura, R. J. Cell Biol. (2001) [Pubmed]
  31. The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation. Sowa, G., Pypaert, M., Fulton, D., Sessa, W.C. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  32. Plasma membrane localization and function of the estrogen receptor alpha variant (ER46) in human endothelial cells. Li, L., Haynes, M.P., Bender, J.R. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  33. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Razani, B., Wang, X.B., Engelman, J.A., Battista, M., Lagaud, G., Zhang, X.L., Kneitz, B., Hou, H., Christ, G.J., Edelmann, W., Lisanti, M.P. Mol. Cell. Biol. (2002) [Pubmed]
  34. Pathways for internalization and recycling of the chemokine receptor CCR5. Mueller, A., Kelly, E., Strange, P.G. Blood (2002) [Pubmed]
  35. The urokinase-type plasminogen activator receptor, a GPI-linked protein, is localized in caveolae. Stahl, A., Mueller, B.M. J. Cell Biol. (1995) [Pubmed]
  36. Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein. Stan, R.V., Ghitescu, L., Jacobson, B.S., Palade, G.E. J. Cell Biol. (1999) [Pubmed]
  37. Endothelial Ca2+ waves preferentially originate at specific loci in caveolin-rich cell edges. Isshiki, M., Ando, J., Korenaga, R., Kogo, H., Fujimoto, T., Fujita, T., Kamiya, A. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  38. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. García-Cardeña, G., Oh, P., Liu, J., Schnitzer, J.E., Sessa, W.C. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
 
WikiGenes - Universities