The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Picea

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Picea

 

High impact information on Picea

  • Ultrastructure of the endocytotic pathway in glutaraldehyde-fixed and high-pressure frozen/freeze-substituted protoplasts of white spruce (Picea glauca) [2].
  • We assessed the effects of brefeldin A (BFA) on pollen tube development in Picea meyeri using fluorescent marker FM4-64 as a membrane-inserted endocytic/recycling marker, together with ultrastructural studies and Fourier transform infrared analysis of cell walls [3].
  • In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles [4].
  • Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis [5].
  • The thermal dependence of kinetic parameters has been determined in purified or partially purified preparations of cold-hardiness-specific glutathione reductase isozymes from red spruce (Picea rubens Sarg.) needles to investigate a possible functional adaptation of these isozymes to environmental temperature [6].
 

Biological context of Picea

 

Associations of Picea with chemical compounds

  • A specific condensed lignin substructure, dibenzodioxocin, was immunolocalized in differentiating cell walls of Norway spruce ( Picea abies (L.) H. Karsten) and silver birch ( Betula pendula Roth) xylem [11].
  • Embryogenic tissues of white spruce [Picea glauca (Moench) Voss] remain in an early developmental stage while cultured on 2,4-dichlorophenoxyacetic acid and N6-benzyladenine, but develop to cotyledonary embryos when these phytohormones are replaced by abscisic acid [12].
  • A literature survey showed that kc constancy is observed with both NO3- and ammonium (NH4+) fluxes in many plant species, including H. vulgare, Arabidopsis thaliana, Picea glauca, and Oryza sativa [13].
  • Characterisation of different clones of Picea abies (L.) Karst using head-space sampling of cortical tissues combined with enantioselective capillary gas chromatography for the separation of chiral and non-chiral monoterpenes [14].
  • The chemopreventive effects of hydroxymatairesinol (HMR), a lignan extracted from Norway spruce (Picea abies), on the development of mammary carcinoma induced by 7,12-dimethylbenz[a]anthracene (DMBA) was studied in rats [15].
 

Gene context of Picea

  • Molecular characterization of a phosphoenolpyruvate carboxylase in the gymnosperm Picea abies (Norway spruce) [16].
  • A phylogenetic analysis of the plant MIP family, including both plasmamembrane (PIP) and tonoplast intrinsic protein (TIP) from Picea, suggests that MIP subgroups evolved already 330 million years ago, as this is the dating of conifer and angiosperm divergence [17].
  • The putative plant defensin SPI1 cDNA from the conifer Norway spruce (Picea abies) is the only known plant defensin-like sequence from a gymnosperm [18].
  • Two genomic full-length alleles of a phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) were isolated and analysed in the gymnosperm Norway spruce [Picea abies (L.) Karst.]. Mendelian segregation analysis confirmed that the two alleles belong to the same DNA gene locus [19].
  • Isozymes of glutathione reductase (GR) have been purified from red spruce (Picea rubens Sarg.) needles [20].
 

Analytical, diagnostic and therapeutic context of Picea

  • Blue spruce (Picea pungens) cell cultures were established from leaf and stem sections of an adult tree on a range of media of which BSPM4 (B5 medium plus 10 microM 2,4-D and 1 microM kinetin), and BSPM 6 (MS medium plus 5 microM 2,4-D and 1 microM kinetin) were optimal [21].
  • PCR amplification with degenerate primers targeted to highly conserved amino acid motifs within the MYB domain was used to demonstrate that black spruce (Picea mariana) possesses a diverse MYB gene family [22].

References

  1. Mono and diterpene production in Escherichia coli. Reiling, K.K., Yoshikuni, Y., Martin, V.J., Newman, J., Bohlmann, J., Keasling, J.D. Biotechnol. Bioeng. (2004) [Pubmed]
  2. Ultrastructure of the endocytotic pathway in glutaraldehyde-fixed and high-pressure frozen/freeze-substituted protoplasts of white spruce (Picea glauca). Galway, M.E., Rennie, P.J., Fowke, L.C. J. Cell. Sci. (1993) [Pubmed]
  3. Effects of brefeldin A on pollen germination and tube growth. Antagonistic effects on endocytosis and secretion. Wang, Q., Kong, L., Hao, H., Wang, X., Lin, J., Samaj, J., Baluska, F. Plant Physiol. (2005) [Pubmed]
  4. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Martin, D.M., Fäldt, J., Bohlmann, J. Plant Physiol. (2004) [Pubmed]
  5. Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Côté, C., Bosnich, W., Kauffeldt, C., Sunohara, G., Séguin, A., Stewart, D. Plant J. (1998) [Pubmed]
  6. Cold-hardiness-specific glutathione reductase isozymes in red spruce. Thermal dependence of kinetic parameters and possible regulatory mechanisms. Hausladen, A., Alscher, R.G. Plant Physiol. (1994) [Pubmed]
  7. Molecular evolution of cdc2 pseudogenes in spruce (Picea). Kvarnheden, A., Albert, V.A., Engström, P. Plant Mol. Biol. (1998) [Pubmed]
  8. Isolation and characterization of a cDNA clone encoding a putative white spruce glycine-rich RNA binding protein. Richard, S., Drevet, C., Jouanin, L., Séguin, A. Gene (1999) [Pubmed]
  9. The effect of reduced glutathione on morphology and gene expression of white spruce (Picea glauca) somatic embryos. Stasolla, C., Belmonte, M.F., van Zyl, L., Craig, D.L., Liu, W., Yeung, E.C., Sederoff, R.R. J. Exp. Bot. (2004) [Pubmed]
  10. Acclimation of shoot and needle morphology and photosynthesis of two Picea species to differences in soil nutrient availability. Ishii, H., Ooishi, M., Maruyama, Y., Koike, T. Tree Physiol. (2003) [Pubmed]
  11. The dibenzodioxocin lignin substructure is abundant in the inner part of the secondary wall in Norway spruce and silver birch xylem. Kukkola, E.M., Koutaniemi, S., Pöllänen, E., Gustafsson, M., Karhunen, P., Lundell, T.K., Saranpää, P., Kilpeläinen, I., Teeri, T.H., Fagerstedt, K.V. Planta (2004) [Pubmed]
  12. Expression of abundant mRNAs during somatic embryogenesis of white spruce [Picea glauca (Moench) Voss]. Dong, J.Z., Dunstan, D.I. Planta (1996) [Pubmed]
  13. Constancy of nitrogen turnover kinetics in the plant cell: insights into the integration of subcellular N fluxes. Britto, D.T., Kronzucker, H.J. Planta (2001) [Pubmed]
  14. Characterisation of different clones of Picea abies (L.) Karst using head-space sampling of cortical tissues combined with enantioselective capillary gas chromatography for the separation of chiral and non-chiral monoterpenes. Silvestrini, E., Michelozzi, M., Skroppa, T., Brancaleoni, E., Ciccioli, P. Journal of chromatography. A. (2004) [Pubmed]
  15. Uptake and metabolism of hydroxymatairesinol in relation to its anticarcinogenicity in DMBA-induced rat mammary carcinoma model. Saarinen, N.M., Huovinen, R., Wärri, A., Mäkelä, S.I., Valentín-Blasini, L., Needham, L., Eckerman, C., Collan, Y.U., Santti, R. Nutrition and cancer. (2001) [Pubmed]
  16. Molecular characterization of a phosphoenolpyruvate carboxylase in the gymnosperm Picea abies (Norway spruce). Relle, M., Wild, A. Plant Mol. Biol. (1996) [Pubmed]
  17. Expression pattern of transcripts encoding water channel-like proteins in Norway spruce (Picea abies). Oliviusson, P., Salaj, J., Hakman, I. Plant Mol. Biol. (2001) [Pubmed]
  18. The putative gymnosperm plant defensin polypeptide (SPI1) accumulates after seed germination, is not readily released, and the SPI1 levels are reduced in Pythium dimorphum-infected spruce roots. Fossdal, C.G., Nagy, N.E., Sharma, P., Lönneborg, A. Plant Mol. Biol. (2003) [Pubmed]
  19. New insights into allelic diversity of a phosphoeno/pyruvate carboxylase in the conifer Picea abies (l.) Karst. Ipsen, A., Ziegenhagen, B. Planta (2001) [Pubmed]
  20. Purification and characterization of glutathione reductase isozymes specific for the state of cold hardiness of red spruce. Hausladen, A., Alscher, R.G. Plant Physiol. (1994) [Pubmed]
  21. Blue spruce (Picea pungens) tissue and cell culture. Manandhar, A., Gresshoff, P.M. Cytobios (1980) [Pubmed]
  22. Characterization of a MYBR2R3 gene from black spruce (Picea mariana) that shares functional conservation with maize C1. Xue, B., Charest, P.J., Devantier, Y., Rutledge, R.G. Mol. Genet. Genomics (2003) [Pubmed]
 
WikiGenes - Universities