The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Isotope Labeling

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Isotope Labeling

 

High impact information on Isotope Labeling

  • Oxygen-18 isotope labeling showed that water is the source of the oxygen atoms in the molecular oxygen evolved, and so this system is a functional model for photosynthetic water oxidation [5].
  • Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling [6].
  • Differential quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling [7].
  • It is based on the conjugation of glycoproteins to a solid support using hydrazide chemistry, stable isotope labeling of glycopeptides and the specific release of formerly N-linked glycosylated peptides via peptide- N-glycosidase F (PNGase F) [8].
  • Histones and NHP were fractionated on polyacrylamide gels and a double isotope labeling proceudre was used to study the synthesis of the individual histone proteins and NHP [9].
 

Biological context of Isotope Labeling

 

Anatomical context of Isotope Labeling

 

Associations of Isotope Labeling with chemical compounds

 

Gene context of Isotope Labeling

  • This approach is applicable both to in-gel (as shown for CYP2B1 and CYP2B2) and in-solution digests (as shown for CYP1A2, CYP2E1, and CYP2C19) and does not require introduction of stable isotopes or labeling with isotope-coded affinity tagging [25].
  • Formation of benzo[a]pyrene diol epoxide-DNA adducts at specific guanines within K-ras and p53 gene sequences: stable isotope-labeling mass spectrometry approach [26].
  • Product analysis, isotope labeling ((2)H and (18)O), and potential energy surface mapping by ab initio calculations at the G2(MP2) and B3-PMP2 levels of theory and in combination with Rice-Ramsperger-Kassel-Marcus (RRKM) kinetic calculations are used to assign the major and some minor pathways for 1 dissociations [27].
  • Expression, purification, and isotope labeling of cannabinoid CB2 receptor fragment, CB2(180-233) [28].
  • Binding studies employing double isotope labeling methods demonstrated that about 0.5 to 1.0 Fc receptor was blocked for each molecule of intact antibody bound to a U-937 cell [29].
 

Analytical, diagnostic and therapeutic context of Isotope Labeling

References

  1. Isotope labeling of free and aminoacyl transfer RNA synthetase-bound transfer RNA. Schoemaker, H.J., Schimmel, P.R. J. Biol. Chem. (1976) [Pubmed]
  2. N-Hydroxyamide metabolites of lidocaine. Synthesis, characterization, quantitation, and mutagenic potential. Nelson, S.D., Nelson, W.L., Trager, W.F. J. Med. Chem. (1978) [Pubmed]
  3. 15N-labeled P22 c2 repressor for nuclear magnetic resonance studies of protein-DNA interactions. Senn, H., Eugster, A., Otting, G., Suter, F., Wüthrich, K. Eur. Biophys. J. (1987) [Pubmed]
  4. Iron-source preference of Staphylococcus aureus infections. Skaar, E.P., Humayun, M., Bae, T., DeBord, K.L., Schneewind, O. Science (2004) [Pubmed]
  5. A functional model for O-O bond formation by the O2-evolving complex in photosystem II. Limburg, J., Vrettos, J.S., Liable-Sands, L.M., Rheingold, A.L., Crabtree, R.H., Brudvig, G.W. Science (1999) [Pubmed]
  6. Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. Vitali, F., Henning, A., Oberstrass, F.C., Hargous, Y., Auweter, S.D., Erat, M., Allain, F.H. EMBO J. (2006) [Pubmed]
  7. Differential quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling. Lemmel, C., Weik, S., Eberle, U., Dengjel, J., Kratt, T., Becker, H.D., Rammensee, H.G., Stevanovic, S. Nat. Biotechnol. (2004) [Pubmed]
  8. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Zhang, H., Li, X.J., Martin, D.B., Aebersold, R. Nat. Biotechnol. (2003) [Pubmed]
  9. Effect of erythropoietin on chromosomal protein synthesis. Spivak, J.L. Blood (1976) [Pubmed]
  10. Kinetic modeling of folate metabolism through use of chronic administration of deuterium-labeled folic acid in men. Stites, T.E., Bailey, L.B., Scott, K.C., Toth, J.P., Fisher, W.P., Gregory, J.F. Am. J. Clin. Nutr. (1997) [Pubmed]
  11. Determination of pharmacokinetic drug interactions with carbamazepine and phenytoin using stable isotope labeling and simple high-performance liquid chromatography/ultraviolet detection technique. Browne, T.R., Szabo, G.K., Davoudi, H., Josephs, E.G. Neurology (1994) [Pubmed]
  12. Biosynthesis of 3-dimethylsulfoniopropionate in Wollastonia biflora (L.) DC. Evidence that S-methylmethionine is an intermediate. Hanson, A.D., Rivoal, J., Paquet, L., Gage, D.A. Plant Physiol. (1994) [Pubmed]
  13. Stable-isotope dimethyl labeling for quantitative proteomics. Hsu, J.L., Huang, S.Y., Chow, N.H., Chen, S.H. Anal. Chem. (2003) [Pubmed]
  14. Characterization of diaminouracil metabolites of caffeine in human urine. Branfman, A.R., McComish, M.F., Bruni, R.J., Callahan, M.M., Robertson, R., Yesair, D.W. Drug Metab. Dispos. (1983) [Pubmed]
  15. Heavy isotope labeling study of the turnover of forskolin-stimulated adenylate cyclase in BC3H1 cell line. Bouhelal, R., Bockaert, J., Mermet-Bouvier, R., Guillon, G., Homburger, V. J. Biol. Chem. (1987) [Pubmed]
  16. Heavy isotope-labeling study of the metabolism of monomeric and tetrameric acetylcholinesterase forms in the murine neuronal-like T 28 hybrid cell line. Lazar, M., Salmeron, E., Vigny, M., Massoulié, J. J. Biol. Chem. (1984) [Pubmed]
  17. Phosphorylation of a 225-kDa centrosomal component in mitotic CHO cells and sea urchin eggs. Kuriyama, R., Maekawa, T. Exp. Cell Res. (1992) [Pubmed]
  18. Metabolism of unsaturated derivatives of valproic acid in rat liver microsomes and destruction of cytochrome P-450. Prickett, K.S., Baillie, T.A. Drug Metab. Dispos. (1986) [Pubmed]
  19. Origins of neutral sterols in human feces studied by stable isotope labeling (D and 13C). Effect of phytosterols and calcium. Ferezou, J., Sulpice, J.C., Coste, T., Chevallier, F. Digestion (1982) [Pubmed]
  20. C-methylation occurs during the biosynthesis of heme d1. Yap-Bondoc, F., Bondoc, L.L., Timkovich, R., Baker, D.C., Hebbler, A. J. Biol. Chem. (1990) [Pubmed]
  21. Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. Chance, E.M., Seeholzer, S.H., Kobayashi, K., Williamson, J.R. J. Biol. Chem. (1983) [Pubmed]
  22. Bacteriophage T4 anaerobic ribonucleotide reductase contains a stable glycyl radical at position 580. Young, P., Andersson, J., Sahlin, M., Sjöberg, B.M. J. Biol. Chem. (1996) [Pubmed]
  23. Role of Tyr-288 at the dioxygen reduction site of cytochrome bo studied by stable isotope labeling and resonance raman spectroscopy. Uchida, T., Mogi, T., Nakamura, H., Kitagawa, T. J. Biol. Chem. (2004) [Pubmed]
  24. Cleavage of pyrogallol by non-heme iron-containing dioxygenases. Saeki, Y., Nozaki, M., Senoh, S. J. Biol. Chem. (1980) [Pubmed]
  25. Quantitative analysis of cytochrome p450 isozymes by means of unique isozyme-specific tryptic peptides: a proteomic approach. Alterman, M.A., Kornilayev, B., Duzhak, T., Yakovlev, D. Drug Metab. Dispos. (2005) [Pubmed]
  26. Formation of benzo[a]pyrene diol epoxide-DNA adducts at specific guanines within K-ras and p53 gene sequences: stable isotope-labeling mass spectrometry approach. Tretyakova, N., Matter, B., Jones, R., Shallop, A. Biochemistry (2002) [Pubmed]
  27. Modeling deoxyribose radicals by neutralization-reionization mass spectrometry. Part 1. Preparation, dissociations, and energetics of 2-hydroxyoxolan-2-yl radical, neutral isomers, and cations. Vivekananda, S., Sadílek, M., Chen, X., Turecek, F. J. Am. Soc. Mass Spectrom. (2004) [Pubmed]
  28. Expression, purification, and isotope labeling of cannabinoid CB2 receptor fragment, CB2(180-233). Xie, X.Q., Zhao, J., Zheng, H. Protein Expr. Purif. (2004) [Pubmed]
  29. Blockade of Fc receptor-mediated binding to U-937 cells by murine monoclonal antibodies directed against a variety of surface antigens. Kurlander, R.J. J. Immunol. (1983) [Pubmed]
  30. Protein expression systems for structural genomics and proteomics. Yokoyama, S. Current opinion in chemical biology. (2003) [Pubmed]
  31. Tyrosine structural changes detected during the photoactivation of rhodopsin. DeLange, F., Klaassen, C.H., Wallace-Williams, S.E., Bovee-Geurts, P.H., Liu, X.M., DeGrip, W.J., Rothschild, K.J. J. Biol. Chem. (1998) [Pubmed]
  32. Fourier transform infrared difference spectroscopy of photosystem II tyrosine D using site-directed mutagenesis and specific isotope labeling. Hienerwadel, R., Boussac, A., Breton, J., Diner, B.A., Berthomieu, C. Biochemistry (1997) [Pubmed]
  33. Restriction fragment length polymorphism analysis of isotype-labeled polymerase chain reaction-amplified human papillomavirus DNA combines sensitivity with built-in contaminant detection. Zitz, J.C., McLachlin, C.M., Tate, J.E., Mutter, G.L., Crum, C.P. Mod. Pathol. (1994) [Pubmed]
  34. Identification of some human urinary metabolites of orally administered potassium canrenoate by stable isotope-labeling techniques. Vose, C.W., Boreham, D.R., Ford, G.C., Haskins, N.J., Palmer, R.F. Drug Metab. Dispos. (1979) [Pubmed]
 
WikiGenes - Universities