The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Chromatin Immunoprecipitation

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chromatin Immunoprecipitation

 

High impact information on Chromatin Immunoprecipitation

  • Chromatin immunoprecipitation and biochemical experiments indicate that the chromodomain of Eaf3 recruits Rpd3C(S) to nucleosomes methylated by Set2 on histone H3 lysine 36, leading to deacetylation of transcribed regions [6].
  • We used a number of different molecular approaches and chromatin immunoprecipitation strategies to show a unique cooperation between Brm, BAF57 and MeCP2 [7].
  • Chromatin immunoprecipitation analysis showed that a poly(ADP-ribosyl)ation mark, which exclusively segregates with the maternal allele of the insulator domain in the H19 imprinting control region, requires the bases that are essential for interaction with CTCF [8].
  • Using haplotype-specific chromatin immunoprecipitation, we confirmed that ABF-1 is preferentially recruited to the low-producer allele in vivo [9].
  • We developed a novel approach to identify CREB targets, termed serial analysis of chromatin occupancy (SACO), by combining chromatin immunoprecipitation (ChIP) with a modification of SAGE [10].
 

Chemical compound and disease context of Chromatin Immunoprecipitation

 

Biological context of Chromatin Immunoprecipitation

 

Anatomical context of Chromatin Immunoprecipitation

 

Associations of Chromatin Immunoprecipitation with chemical compounds

 

Gene context of Chromatin Immunoprecipitation

 

Analytical, diagnostic and therapeutic context of Chromatin Immunoprecipitation

References

  1. Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Wade, J.T., Reppas, N.B., Church, G.M., Struhl, K. Genes Dev. (2005) [Pubmed]
  2. MRG15 regulates embryonic development and cell proliferation. Tominaga, K., Kirtane, B., Jackson, J.G., Ikeno, Y., Ikeda, T., Hawks, C., Smith, J.R., Matzuk, M.M., Pereira-Smith, O.M. Mol. Cell. Biol. (2005) [Pubmed]
  3. Runx1 binds positive transcription elongation factor b and represses transcriptional elongation by RNA polymerase II: possible mechanism of CD4 silencing. Jiang, H., Zhang, F., Kurosu, T., Peterlin, B.M. Mol. Cell. Biol. (2005) [Pubmed]
  4. C/EBPalpha and HNF6 protein complex formation stimulates HNF6-dependent transcription by CBP coactivator recruitment in HepG2 cells. Yoshida, Y., Hughes, D.E., Rausa, F.M., Kim, I.M., Tan, Y., Darlington, G.J., Costa, R.H. Hepatology (2006) [Pubmed]
  5. The interferon consensus sequence-binding protein activates transcription of the gene encoding neurofibromin 1. Zhu, C., Saberwal, G., Lu, Y., Platanias, L.C., Eklund, E.A. J. Biol. Chem. (2004) [Pubmed]
  6. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Keogh, M.C., Kurdistani, S.K., Morris, S.A., Ahn, S.H., Podolny, V., Collins, S.R., Schuldiner, M., Chin, K., Punna, T., Thompson, N.J., Boone, C., Emili, A., Weissman, J.S., Hughes, T.R., Strahl, B.D., Grunstein, M., Greenblatt, J.F., Buratowski, S., Krogan, N.J. Cell (2005) [Pubmed]
  7. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Harikrishnan, K.N., Chow, M.Z., Baker, E.K., Pal, S., Bassal, S., Brasacchio, D., Wang, L., Craig, J.M., Jones, P.L., Sif, S., El-Osta, A. Nat. Genet. (2005) [Pubmed]
  8. Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Yu, W., Ginjala, V., Pant, V., Chernukhin, I., Whitehead, J., Docquier, F., Farrar, D., Tavoosidana, G., Mukhopadhyay, R., Kanduri, C., Oshimura, M., Feinberg, A.P., Lobanenkov, V., Klenova, E., Ohlsson, R. Nat. Genet. (2004) [Pubmed]
  9. Allele-specific repression of lymphotoxin-alpha by activated B cell factor-1. Knight, J.C., Keating, B.J., Kwiatkowski, D.P. Nat. Genet. (2004) [Pubmed]
  10. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Impey, S., McCorkle, S.R., Cha-Molstad, H., Dwyer, J.M., Yochum, G.S., Boss, J.M., McWeeney, S., Dunn, J.J., Mandel, G., Goodman, R.H. Cell (2004) [Pubmed]
  11. Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression. Ylisastigui, L., Archin, N.M., Lehrman, G., Bosch, R.J., Margolis, D.M. AIDS (2004) [Pubmed]
  12. Identification of genomic DNA sequences bound by mutant p53 protein (Gly245-->Ser) in vivo. Koga, H., Deppert, W. Oncogene (2000) [Pubmed]
  13. Identification and functional analysis of consensus androgen response elements in human prostate cancer cells. Horie-Inoue, K., Bono, H., Okazaki, Y., Inoue, S. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  14. Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. Huang, Y., Doherty, J.J., Dingledine, R. J. Neurosci. (2002) [Pubmed]
  15. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Guan, Z., Giustetto, M., Lomvardas, S., Kim, J.H., Miniaci, M.C., Schwartz, J.H., Thanos, D., Kandel, E.R. Cell (2002) [Pubmed]
  16. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Blat, Y., Kleckner, N. Cell (1999) [Pubmed]
  17. BRCA1 supports XIST RNA concentration on the inactive X chromosome. Ganesan, S., Silver, D.P., Greenberg, R.A., Avni, D., Drapkin, R., Miron, A., Mok, S.C., Randrianarison, V., Brodie, S., Salstrom, J., Rasmussen, T.P., Klimke, A., Marrese, C., Marahrens, Y., Deng, C.X., Feunteun, J., Livingston, D.M. Cell (2002) [Pubmed]
  18. Telomerase: what are the Est proteins doing? Taggart, A.K., Zakian, V.A. Curr. Opin. Cell Biol. (2003) [Pubmed]
  19. A role for E2F6 in distinguishing G1/S- and G2/M-specific transcription. Giangrande, P.H., Zhu, W., Schlisio, S., Sun, X., Mori, S., Gaubatz, S., Nevins, J.R. Genes Dev. (2004) [Pubmed]
  20. The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Lacorazza, H.D., Miyazaki, Y., Di Cristofano, A., Deblasio, A., Hedvat, C., Zhang, J., Cordon-Cardo, C., Mao, S., Pandolfi, P.P., Nimer, S.D. Immunity (2002) [Pubmed]
  21. Evidence for a new human CYP1A1 regulation pathway involving PPAR-alpha and 2 PPRE sites. Sérée, E., Villard, P.H., Pascussi, J.M., Pineau, T., Maurel, P., Nguyen, Q.B., Fallone, F., Martin, P.M., Champion, S., Lacarelle, B., Savouret, J.F., Barra, Y. Gastroenterology (2004) [Pubmed]
  22. Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Kondo, Y., Shen, L., Yan, P.S., Huang, T.H., Issa, J.P. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  23. Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Sun, J., Brand, M., Zenke, Y., Tashiro, S., Groudine, M., Igarashi, K. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  24. Developmental stage differences in chromatin subdomains of the beta-globin locus. Kim, A., Dean, A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  25. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Shang, Y., Hu, X., DiRenzo, J., Lazar, M.A., Brown, M. Cell (2000) [Pubmed]
  26. In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Bhaumik, S.R., Raha, T., Aiello, D.P., Green, M.R. Genes Dev. (2004) [Pubmed]
  27. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Claudel, T., Inoue, Y., Barbier, O., Duran-Sandoval, D., Kosykh, V., Fruchart, J., Fruchart, J.C., Gonzalez, F.J., Staels, B. Gastroenterology (2003) [Pubmed]
  28. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. Cobb, J.A., Bjergbaek, L., Shimada, K., Frei, C., Gasser, S.M. EMBO J. (2003) [Pubmed]
  29. The ErbB3-binding protein Ebp1 suppresses androgen receptor-mediated gene transcription and tumorigenesis of prostate cancer cells. Zhang, Y., Wang, X.W., Jelovac, D., Nakanishi, T., Yu, M.H., Akinmade, D., Goloubeva, O., Ross, D.D., Brodie, A., Hamburger, A.W. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  30. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Person, R.E., Li, F.Q., Duan, Z., Benson, K.F., Wechsler, J., Papadaki, H.A., Eliopoulos, G., Kaufman, C., Bertolone, S.J., Nakamoto, B., Papayannopoulou, T., Grimes, H.L., Horwitz, M. Nat. Genet. (2003) [Pubmed]
  31. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Kondo, T., Wakayama, T., Naiki, T., Matsumoto, K., Sugimoto, K. Science (2001) [Pubmed]
  32. Attenuation of estrogen receptor alpha-mediated transcription through estrogen-stimulated recruitment of a negative elongation factor. Aiyar, S.E., Sun, J.L., Blair, A.L., Moskaluk, C.A., Lu, Y.Z., Ye, Q.N., Yamaguchi, Y., Mukherjee, A., Ren, D.M., Handa, H., Li, R. Genes Dev. (2004) [Pubmed]
  33. The control of Spo11's interaction with meiotic recombination hotspots. Prieler, S., Penkner, A., Borde, V., Klein, F. Genes Dev. (2005) [Pubmed]
  34. Evidence that Swi/Snf directly represses transcription in S. cerevisiae. Martens, J.A., Winston, F. Genes Dev. (2002) [Pubmed]
  35. Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. Hinz, M., Lemke, P., Anagnostopoulos, I., Hacker, C., Krappmann, D., Mathas, S., Dörken, B., Zenke, M., Stein, H., Scheidereit, C. J. Exp. Med. (2002) [Pubmed]
  36. 5' CArG degeneracy in smooth muscle alpha-actin is required for injury-induced gene suppression in vivo. Hendrix, J.A., Wamhoff, B.R., McDonald, O.G., Sinha, S., Yoshida, T., Owens, G.K. J. Clin. Invest. (2005) [Pubmed]
  37. Galectin-3 modulates MUC2 mucin expression in human colon cancer cells at the level of transcription via AP-1 activation. Song, S., Byrd, J.C., Mazurek, N., Liu, K., Koo, J.S., Bresalier, R.S. Gastroenterology (2005) [Pubmed]
  38. Tumor necrosis factor alpha-mediated reduction of KLF2 is due to inhibition of MEF2 by NF-kappaB and histone deacetylases. Kumar, A., Lin, Z., SenBanerjee, S., Jain, M.K. Mol. Cell. Biol. (2005) [Pubmed]
  39. Rapid shortening of telomere length in response to ceramide involves the inhibition of telomere binding activity of nuclear glyceraldehyde-3-phosphate dehydrogenase. Sundararaj, K.P., Wood, R.E., Ponnusamy, S., Salas, A.M., Szulc, Z., Bielawska, A., Obeid, L.M., Hannun, Y.A., Ogretmen, B. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities