The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Xenopus

  • In the human breast cancer cell line MCF-7, we observe estrogen induction of the stable transfected Xenopus vitellogenin A2 gene [1].
  • We were unable to detect evidence of sulfate transport following the expression of pendrin in Xenopus laevis oocytes by microinjection of PDS cRNA or in Sf9 cells following infection with PDS-recombinant baculovirus [2].
  • Bulged bases in RNA helices are potentially significant in RNA folding and in providing sites for specific protein-RNA interactions, as illustrated by TFIIIA of Xenopus and the coat protein of phage R17 [3].
  • The cloned cDNAs encoding the four subunits of the Torpedo californica acetylcholine receptor, each carried by a simian virus 40 vector, direct the synthesis of the functional receptor in a combined expression system consisting of COS monkey cells and Xenopus oocytes [4].
  • During the metamorphosis of the Xenopus laevis retina, thyroid hormone (TH) preferentially induces ventral ciliary marginal zone (CMZ) cells to both increase their proliferation and give rise to ipsilaterally projecting ganglion cells [5].

Psychiatry related information on Xenopus


High impact information on Xenopus


Chemical compound and disease context of Xenopus


Biological context of Xenopus


Anatomical context of Xenopus


Associations of Xenopus with chemical compounds


Gene context of Xenopus

  • Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4 [32].
  • We have cloned a Xenopus homolog of the largest ORC polypeptide (XORC1) [33].
  • The amino terminus of DmORC1 contained a strong HP1-binding site, mirroring an interaction found independently in Xenopus by a yeast two-hybrid screen [34].
  • Injection of wildtype and mutated FZD4 into Xenopus laevis embryos revealed that wildtype, but not mutant, frizzled-4 activated calcium/calmodulin-dependent protein kinase II (CAMKII) and protein kinase C (PKC), components of the Wnt/Ca(2+) signaling pathway [35].
  • Using Xenopus laevis egg extracts, we have identified and purified a 170-kD protein, focus-forming activity 1 (FFA-1), which is required for the formation of replication foci [36].

Analytical, diagnostic and therapeutic context of Xenopus


  1. An estrogen-responsive element derived from the 5' flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Klein-Hitpass, L., Schorpp, M., Wagner, U., Ryffel, G.U. Cell (1986) [Pubmed]
  2. The Pendred syndrome gene encodes a chloride-iodide transport protein. Scott, D.A., Wang, R., Kreman, T.M., Sheffield, V.C., Karniski, L.P. Nat. Genet. (1999) [Pubmed]
  3. RNA bulges and the helical periodicity of double-stranded RNA. Bhattacharyya, A., Murchie, A.I., Lilley, D.M. Nature (1990) [Pubmed]
  4. Expression of functional acetylcholine receptor from cloned cDNAs. Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M. Nature (1984) [Pubmed]
  5. Asymmetric growth and development of the Xenopus laevis retina during metamorphosis is controlled by type III deiodinase. Marsh-Armstrong, N., Huang, H., Remo, B.F., Liu, T.T., Brown, D.D. Neuron (1999) [Pubmed]
  6. Restoration of the plasticity of binocular maps by NMDA after the critical period in Xenopus. Udin, S.B., Scherer, W.J. Science (1990) [Pubmed]
  7. Lack of effect of Presenilin 1, betaAPP and their Alzheimer's disease-related mutated forms on Xenopus oocytes membrane currents. Dauch, P., Champigny, G., Ricci, J.E., Checler, F. Neurosci. Lett. (1997) [Pubmed]
  8. Transporters for cationic amino acids in animal cells: discovery, structure, and function. Devés, R., Boyd, C.A. Physiol. Rev. (1998) [Pubmed]
  9. TopBP1 activates the ATR-ATRIP complex. Kumagai, A., Lee, J., Yoo, H.Y., Dunphy, W.G. Cell (2006) [Pubmed]
  10. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Park, T.J., Haigo, S.L., Wallingford, J.B. Nat. Genet. (2006) [Pubmed]
  11. Embryonic dorsal-ventral signaling: secreted frizzled-related proteins as inhibitors of tolloid proteinases. Lee, H.X., Ambrosio, A.L., Reversade, B., De Robertis, E.M. Cell (2006) [Pubmed]
  12. Phosphorylation of ribosomal protein S6 on serine after microinjection of the Abelson murine leukemia virus tyrosine-specific protein kinase into Xenopus oocytes. Maller, J.L., Foulkes, J.G., Erikson, E., Baltimore, D. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  13. DNA primase activity associated with DNA polymerase alpha from Xenopus laevis ovaries. Shioda, M., Nelson, E.M., Bayne, M.L., Benbow, R.M. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  14. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Bennink, M.L., Leuba, S.H., Leno, G.H., Zlatanova, J., de Grooth, B.G., Greve, J. Nat. Struct. Biol. (2001) [Pubmed]
  15. Regulation of Xenopus oocyte meiosis arrest by G protein betagamma subunits. Sheng, Y., Tiberi, M., Booth, R.A., Ma, C., Liu, X.J. Curr. Biol. (2001) [Pubmed]
  16. The Gly/Arg-rich (GAR) domain of Xenopus nucleolin facilitates in vitro nucleic acid binding and in vivo nucleolar localization. Heine, M.A., Rankin, M.L., DiMario, P.J. Mol. Biol. Cell (1993) [Pubmed]
  17. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Hellemans, J., Preobrazhenska, O., Willaert, A., Debeer, P., Verdonk, P.C., Costa, T., Janssens, K., Menten, B., Van Roy, N., Vermeulen, S.J., Savarirayan, R., Van Hul, W., Vanhoenacker, F., Huylebroeck, D., De Paepe, A., Naeyaert, J.M., Vandesompele, J., Speleman, F., Verschueren, K., Coucke, P.J., Mortier, G.R. Nat. Genet. (2004) [Pubmed]
  18. The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Coleman, T.R., Carpenter, P.B., Dunphy, W.G. Cell (1996) [Pubmed]
  19. Temporal and spatial regulation of fibronectin in early Xenopus development. Lee, G., Hynes, R., Kirschner, M. Cell (1984) [Pubmed]
  20. The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Kimelman, D., Kirschner, M., Scherson, T. Cell (1987) [Pubmed]
  21. RNA and DNA binding zinc fingers in Xenopus TFIIIA. Theunissen, O., Rudt, F., Guddat, U., Mentzel, H., Pieler, T. Cell (1992) [Pubmed]
  22. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Amaya, E., Musci, T.J., Kirschner, M.W. Cell (1991) [Pubmed]
  23. In contrast to other Xenopus genes the estrogen-inducible vitellogenin genes are expressed when totally methylated. Gerber-Huber, S., May, F.E., Westley, B.R., Felber, B.K., Hosbach, H.A., Andres, A.C., Ryffel, G.U. Cell (1983) [Pubmed]
  24. The AAA-ATPase Cdc48/p97 regulates spindle disassembly at the end of mitosis. Cao, K., Nakajima, R., Meyer, H.H., Zheng, Y. Cell (2003) [Pubmed]
  25. Mitosis-specific phosphorylation of p60c-src by p34cdc2-associated protein kinase. Morgan, D.O., Kaplan, J.M., Bishop, J.M., Varmus, H.E. Cell (1989) [Pubmed]
  26. Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Boleti, H., Karsenti, E., Vernos, I. Cell (1996) [Pubmed]
  27. Estrogen stabilizes vitellogenin mRNA against cytoplasmic degradation. Brock, M.L., Shapiro, D.J. Cell (1983) [Pubmed]
  28. Molecular characterization of a swelling-induced chloride conductance regulatory protein, pICln. Krapivinsky, G.B., Ackerman, M.J., Gordon, E.A., Krapivinsky, L.D., Clapham, D.E. Cell (1994) [Pubmed]
  29. Progesterone-induced meiosis in Xenopus laevis oocytes: a role for cAMP at the "maturation-promoting factor" level. Schorderet-Slatkine, S., Schorderet, M., Boquet, P., Godeau, F., Baulieu, E.E. Cell (1978) [Pubmed]
  30. Fission yeast p13 blocks mitotic activation and tyrosine dephosphorylation of the Xenopus cdc2 protein kinase. Dunphy, W.G., Newport, J.W. Cell (1989) [Pubmed]
  31. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Elia, A.E., Rellos, P., Haire, L.F., Chao, J.W., Ivins, F.J., Hoepker, K., Mohammad, D., Cantley, L.C., Smerdon, S.J., Yaffe, M.B. Cell (2003) [Pubmed]
  32. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Piccolo, S., Sasai, Y., Lu, B., De Robertis, E.M. Cell (1996) [Pubmed]
  33. Interaction between the origin recognition complex and the replication licensing system in Xenopus. Rowles, A., Chong, J.P., Brown, L., Howell, M., Evan, G.I., Blow, J.J. Cell (1996) [Pubmed]
  34. Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Pak, D.T., Pflumm, M., Chesnokov, I., Huang, D.W., Kellum, R., Marr, J., Romanowski, P., Botchan, M.R. Cell (1997) [Pubmed]
  35. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Robitaille, J., MacDonald, M.L., Kaykas, A., Sheldahl, L.C., Zeisler, J., Dubé, M.P., Zhang, L.H., Singaraja, R.R., Guernsey, D.L., Zheng, B., Siebert, L.F., Hoskin-Mott, A., Trese, M.T., Pimstone, S.N., Shastry, B.S., Moon, R.T., Hayden, M.R., Goldberg, Y.P., Samuels, M.E. Nat. Genet. (2002) [Pubmed]
  36. Replication focus-forming activity 1 and the Werner syndrome gene product. Yan, H., Chen, C.Y., Kobayashi, R., Newport, J. Nat. Genet. (1998) [Pubmed]
  37. Direct induction by estradiol on vitellogenin synthesis in organ cultures of male Xenopus laevis liver. Green, C.D., Tata, J.R. Cell (1976) [Pubmed]
  38. Disruption of a putative Cys-zinc interaction eliminates the biological activity of the Krüppel finger protein. Redemann, N., Gaul, U., Jäckle, H. Nature (1988) [Pubmed]
  39. GDNF signalling through the Ret receptor tyrosine kinase. Durbec, P., Marcos-Gutierrez, C.V., Kilkenny, C., Grigoriou, M., Wartiowaara, K., Suvanto, P., Smith, D., Ponder, B., Costantini, F., Saarma, M. Nature (1996) [Pubmed]
  40. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Hoshi, T., Zagotta, W.N., Aldrich, R.W. Science (1990) [Pubmed]
  41. Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Lechleiter, J., Girard, S., Peralta, E., Clapham, D. Science (1991) [Pubmed]
WikiGenes - Universities