The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Synaptosomes


Psychiatry related information on Synaptosomes


High impact information on Synaptosomes

  • Architecture of the gamma delta resolvase synaptosome: oriented heterodimers identity interactions essential for synapsis and recombination [11].
  • The N-type Ca2+ channel blocker omega-conotoxin GVIA (omega-CgTx) suppresses the excitatory postsynaptic responses only partially, whereas potassium-induced release of glutamate from brain synaptosomes can be blocked by omega-Aga-VIA (ref. 9), a blocker of P-type calcium channels and possibly of other types of calcium channels [12].
  • Here we report that inhibition of transmitter release from synaptosomes caused by botulinum neurotoxin A (BoNT/A) is associated with the selective proteolysis of the synaptic protein SNAP-25 [13].
  • Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes [14].
  • Here we report that the introduction of Ca2+/CaM-dependent PK II, autoactivated by thiophosphorylation, into rat brain synaptosomes (isolated nerve terminals) increases the initial rate of induced release of two neurotransmitters, glutamate and noradrenaline [14].

Chemical compound and disease context of Synaptosomes


Biological context of Synaptosomes


Anatomical context of Synaptosomes


Associations of Synaptosomes with chemical compounds


Gene context of Synaptosomes

  • Furthermore, depletion of MARCKS by MARCKS-AON treatment of neurons resulted in a significant decrease in Ang II-stimulated accumulation of TH and DbetaH immunoreactivities and [3H]NE uptake activity in synaptosomes [33].
  • Finally, in rat synaptosomes, both spectrin and NR2B are loosened from membranes upon addition of physiological concentrations of calcium ions [34].
  • The purified synaptosomes exhibited specific enrichment of Rab3a, Rab5a, Ral, and several other GTPases [35].
  • 2-Deoxy-d- [1-(14)C]glucose is significantly reduced in synaptosomes prepared from Igf1-/- brains, and the deficit is corrected by inclusion of Igf1 in the incubation medium [36].
  • Subcellular fractionations of olfactory bulb synaptosomes, combined with chemical lesions of olfactory neurons, confirm the presence of Emx2 in axon terminals [37].

Analytical, diagnostic and therapeutic context of Synaptosomes


  1. Myoinositol and phosphatidylinositol metabolism in synaptosomes from galactose-fed rats. Warfield, A.S., Segal, S. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  2. Role of sialic acid in synaptosomal transport of amino acid transmitters. Zaleska, M.M., Erecińska, M. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  3. Selective effects of hyperprolactinemia on in vitro dopamine release from median eminence synaptosomes. Gregerson, K.A., Selmanoff, M. J. Neurosci. (1988) [Pubmed]
  4. Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. McMahon, H.T., Foran, P., Dolly, J.O., Verhage, M., Wiegant, V.M., Nicholls, D.G. J. Biol. Chem. (1992) [Pubmed]
  5. Effect of chronic renal failure on Ca2+ ATPase of brain synaptosomes. Hajjar, S.M., Smogorzewski, M., Zayed, M.A., Fadda, G.Z., Massry, S.G. J. Am. Soc. Nephrol. (1991) [Pubmed]
  6. Thyroid hormones in the rat amygdala as common targets for antidepressant drugs, mood stabilizers, and sleep deprivation. Pinna, G., Broedel, O., Eravci, M., Stoltenburg-Didinger, G., Plueckhan, H., Fuxius, S., Meinhold, H., Baumgartner, A. Biol. Psychiatry (2003) [Pubmed]
  7. Phosphoinositide kinase activities in synaptosomes prepared from brains of patients with Alzheimer's disease and controls. Bothmer, J., Markerink, M., Jolles, J. Neurosci. Lett. (1994) [Pubmed]
  8. Sensitivity of binding of high-affinity dopamine receptor radioligands to increased synaptic dopamine. Gatley, S.J., Gifford, A.N., Carroll, F.I., Volkow, N.D. Synapse (2000) [Pubmed]
  9. Dopaminergic system activity and cellular defense mechanisms in the striatum and striatal synaptosomes of the rat subchronically exposed to manganese. Desole, M.S., Miele, M., Esposito, G., Migheli, R., Fresu, L., De Natale, G., Miele, E. Arch. Toxicol. (1994) [Pubmed]
  10. Effects of suramin on hippocampal apyrase activity and inhibitory avoidance learning of rats. Bonan, C.D., Roesler, R., Quevedo, J., Battastini, A.M., Izquierdo, I., Sarkis, J.J. Pharmacol. Biochem. Behav. (1999) [Pubmed]
  11. Architecture of the gamma delta resolvase synaptosome: oriented heterodimers identity interactions essential for synapsis and recombination. Murley, L.L., Grindley, N.D. Cell (1998) [Pubmed]
  12. Different types of calcium channels mediate central synaptic transmission. Takahashi, T., Momiyama, A. Nature (1993) [Pubmed]
  13. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Blasi, J., Chapman, E.R., Link, E., Binz, T., Yamasaki, S., De Camilli, P., Südhof, T.C., Niemann, H., Jahn, R. Nature (1993) [Pubmed]
  14. Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nichols, R.A., Sihra, T.S., Czernik, A.J., Nairn, A.C., Greengard, P. Nature (1990) [Pubmed]
  15. Demonstration of a ouabainlike plasma compound in hypertension prone and hypertension resistant rats. Lichtstein, D., Minc, D., Shimoni, Y., Deutsch, J., Mekler, J., Ben-Ishay, D. Hypertension (1985) [Pubmed]
  16. Characterization of interactions of methylmercury with Ca2+ channels in synaptosomes and pheochromocytoma cells: radiotracer flux and binding studies. Shafer, T.J., Contreras, M.L., Atchison, W.D. Mol. Pharmacol. (1990) [Pubmed]
  17. Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1). Dowd, L.A., Coyle, A.J., Rothstein, J.D., Pritchett, D.B., Robinson, M.B. Mol. Pharmacol. (1996) [Pubmed]
  18. Clostridium neurotoxins influence serotonin uptake and release differently in rat brain synaptosomes. Najib, A., Pelliccioni, P., Gil, C., Aguilera, J. J. Neurochem. (1999) [Pubmed]
  19. CAPS (mammalian UNC-31) protein localizes to membranes involved in dense-core vesicle exocytosis. Berwin, B., Floor, E., Martin, T.F. Neuron (1998) [Pubmed]
  20. Multiple phosphorylation sites in protein I and their differential regulation by cyclic AMP and calcium. Huttner, W.B., Greengard, P. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  21. Phencyclidine in nanomolar concentrations binds to synaptosomes and blocks certain potassium channels. Blaustein, M.P., Ickowicz, R.K. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  22. Depolarization-induced changes in cellular energy production. Erecińska, M., Nelson, D., Chance, B. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  23. Botulinum toxin type A blocks the morphological changes induced by chemical stimulation on the presynaptic membrane of Torpedo synaptosomes. Marsal, J., Egea, G., Solsona, C., Rabasseda, X., Blasi, J. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  24. Co-release of glutamate and aspartate from cholinergic and GABAergic synaptosomes. Docherty, M., Bradford, H.F., Wu, J.Y. Nature (1987) [Pubmed]
  25. Deficit of spinal cord glycine/strychnine receptors in inherited myoclonus of Poll Hereford calves. Gundlach, A.L., Dodd, P.R., Grabara, C.S., Watson, W.E., Johnston, G.A., Harper, P.A., Dennis, J.A., Healy, P.J. Science (1988) [Pubmed]
  26. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Wemmie, J.A., Chen, J., Askwith, C.C., Hruska-Hageman, A.M., Price, M.P., Nolan, B.C., Yoder, P.G., Lamani, E., Hoshi, T., Freeman, J.H., Welsh, M.J. Neuron (2002) [Pubmed]
  27. Isolation of a presynaptic plasma membrane fraction from Torpedo cholinergic synaptosomes: evidence for a specific protein. Morel, N., Manaranche, R., Israël, M., Gulik-Krzywicki, T. J. Cell Biol. (1982) [Pubmed]
  28. Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis. McGraw, C.F., Somlyo, A.V., Blaustein, M.P. J. Cell Biol. (1980) [Pubmed]
  29. Synaptosomes possess an exocytotic pool of glutamate. Nicholls, D.G., Sihra, T.S. Nature (1986) [Pubmed]
  30. Dopamine stimulates the degradation of gonadotropin releasing hormone by rat synaptosomes. Marcano de Cotte, D., De Menezes, C.E., Bennett, G.W., Edwardson, J.A. Nature (1980) [Pubmed]
  31. Selective release of newly synthesised and newly captured GABA from synaptosomes by potassium depolarisation. Ryan, L.D., Roskoski, R. Nature (1975) [Pubmed]
  32. Choline biosynthesis by a preparation enriched in synaptosomes from rat brain. Blusztajn, J.K., Wurtman, R.J. Nature (1981) [Pubmed]
  33. Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons. Lu, D., Yang, H., Lenox, R.H., Raizada, M.K. J. Cell Biol. (1998) [Pubmed]
  34. Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin. Wechsler, A., Teichberg, V.I. EMBO J. (1998) [Pubmed]
  35. Mapping of Ras-related GTP-binding proteins by GTP overlay following two-dimensional gel electrophoresis. Huber, L.A., Ullrich, O., Takai, Y., Lütcke, A., Dupree, P., Olkkonen, V., Virta, H., de Hoop, M.J., Alexandrov, K., Peter, M. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  36. Insulin-like growth factor 1 regulates developing brain glucose metabolism. Cheng, C.M., Reinhardt, R.R., Lee, W.H., Joncas, G., Patel, S.C., Bondy, C.A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  37. Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons. Nédélec, S., Foucher, I., Brunet, I., Bouillot, C., Prochiantz, A., Trembleau, A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  38. Abnormal sodium transport in synaptosomes from brain of uremic rats. Fraser, C.L., Sarnacki, P., Arieff, A.I. J. Clin. Invest. (1985) [Pubmed]
  39. Thiamine as an integral component of brain synaptosomal membranes. Matsuda, T., Cooper, J.R. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  40. Immunocytochemical localization of the plasma membrane calcium pump, calbindin-D28k, and parvalbumin in Purkinje cells of avian and mammalian cerebellum. de Talamoni, N., Smith, C.A., Wasserman, R.H., Beltramino, C., Fullmer, C.S., Penniston, J.T. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  41. Association of Thy-1 differentiation alloantigen with synaptic complexes isolated from mouse brain. Acton, R.T., Addis, J., Carl, G.F., McClain, L.D., Bridgers, W.F. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  42. Coexistence of GABA receptors and GABA-modulin in primary cultures of rat cerebellar granule cells. Vaccarino, F.M., Alho, H., Santi, M.R., Guidotti, A. J. Neurosci. (1987) [Pubmed]
WikiGenes - Universities