The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Virion

  • While the humoral antibody response to viral envelope antigens contributes to the clearance of circulating virus particles, the cellular immune response to the envelope, nucleocapsid, and polymerase antigens eliminates infected cells [1].
  • The HIV-1 accessory protein Vif (virion infectivity factor) is required for the production of infectious virions by CD4(+) lymphocytes [2].
  • Capsid also binds the human peptidyl prolyl isomerase, cyclophilin A, thereby packaging the enzyme into the virion [3].
  • Bacteriophage N4 virion RNA polymerase transcription of double-stranded promoter-containing DNAs requires supercoiled template and E. coli single-stranded DNA-binding protein (EcoSSB); other single-stranded DNA-binding proteins cannot substitute [4].
  • When transfected with purified influenza A virus polymerase proteins--in the presence of helper virus--the recombinant RNA is amplified, expressed, and packaged into virus particles, which can be passaged several times [5].

High impact information on Virion

  • Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif [2].
  • E. coli SSB activates N4 virion RNA polymerase promoters by stabilizing a DNA hairpin required for promoter recognition [4].
  • Phase extraction of virion proteins with Triton X-114 indicated that the modified form of ubiquitin behaved as an integral membrane protein [6].
  • The difference map between the two structures reveals a novel large globular domain of VP4 buried within the virion that interacts extensively with the intermediate shell protein, VP6 [7].
  • Specific sequences and a hairpin structure in the template strand are required for N4 virion RNA polymerase promoter recognition [8].

Chemical compound and disease context of Virion

  • The virion envelope glycoprotein gp85 confers a high degree of subgroup specificity for interaction with distinct cell receptors [9].
  • Sedimentation analysis of pulse-labeled nuclear RNA was performed, and hybridization across sucrose gradients indicated that the major pulse-labeled, virus-specific RNA was 38S, similar or identical in sedimentation to the virion subunit RNA [10].
  • P23 utilization is discernible in linear, glucosylated hydroxymethylcytosine-containing T4 virion DNA [11].
  • We show that virions and purified viral cores contain a unique endonuclease that cleaves RNAs containing a 5' methylated cap structure (m7GpppXm) preferentially at purine residues 10 to 14 nucleotides from the cap, generating fragments with 3'-terminal hydroxyl groups [12].
  • We show that cell-associated enveloped virions (CEV) use Abl- and Src-family tyrosine kinases for actin motility, and that these kinases act in a redundant fashion, perhaps permitting motility in a greater range of cell types [13].

Biological context of Virion


Anatomical context of Virion


Gene context of Virion

  • We demonstrate that virion-associated UNG2 catalytic activity can be replaced by the packaging of heterologous dUTPase into virion, indicating that UNG2 acts to counteract dUTP misincorporation in the viral genome [24].
  • Vpr is an auxiliary HIV-1 protein, which, unlike the other regulatory gene products, is present at high copy number in virus particles [25].
  • In dose response studies, pretreatment with approximately 100 U/ml of IFN-alpha, approximately 10 U/ml of IFN-beta, or approximately 100 U/ml of IFN-gamma was sufficient to prevent virion release maximally and to prevent cytopathology completely [26].
  • These results show that CD55 and CD59 are incorporated into HIV-1 particles and function to protect virions from complement-mediated destruction, and they are the first report of host cell proteins functioning in protection of HIV-1 from immune effector mechanisms [27].
  • The GR/Mtv-2- mouse strain is congenic to the GR strain but lacks the Mtv-2 gene for high amounts of mouse mammary tumor virus (MMTV) virion particles in the milk and early mammary tumors [28].

Analytical, diagnostic and therapeutic context of Virion


  1. Hepatitis B virus immunopathogenesis. Chisari, F.V., Ferrari, C. Annu. Rev. Immunol. (1995) [Pubmed]
  2. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Mariani, R., Chen, D., Schröfelbauer, B., Navarro, F., König, R., Bollman, B., Münk, C., Nymark-McMahon, H., Landau, N.R. Cell (2003) [Pubmed]
  3. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Gamble, T.R., Vajdos, F.F., Yoo, S., Worthylake, D.K., Houseweart, M., Sundquist, W.I., Hill, C.P. Cell (1996) [Pubmed]
  4. E. coli SSB activates N4 virion RNA polymerase promoters by stabilizing a DNA hairpin required for promoter recognition. Glucksmann-Kuis, M.A., Dai, X., Markiewicz, P., Rothman-Denes, L.B. Cell (1996) [Pubmed]
  5. Amplification, expression, and packaging of foreign gene by influenza virus. Luytjes, W., Krystal, M., Enami, M., Pavin, J.D., Palese, P. Cell (1989) [Pubmed]
  6. Ubiquitin is attached to membranes of baculovirus particles by a novel type of phospholipid anchor. Guarino, L.A., Smith, G., Dong, W. Cell (1995) [Pubmed]
  7. Three-dimensional visualization of the rotavirus hemagglutinin structure. Shaw, A.L., Rothnagel, R., Chen, D., Ramig, R.F., Chiu, W., Prasad, B.V. Cell (1993) [Pubmed]
  8. Specific sequences and a hairpin structure in the template strand are required for N4 virion RNA polymerase promoter recognition. Glucksmann, M.A., Markiewicz, P., Malone, C., Rothman-Denes, L.B. Cell (1992) [Pubmed]
  9. Determinants for receptor interaction and cell killing on the avian retrovirus glycoprotein gp85. Dorner, A.J., Coffin, J.M. Cell (1986) [Pubmed]
  10. RNA metabolism of murine leukemia virus: size analysis of nuclear pulse-labeled virus-specific RNA. Fan, H. Cell (1977) [Pubmed]
  11. Initiation of transcription at phage T4 late promoters with purified RNA polymerase. Kassavetis, G.A., Elliott, T., Rabussay, D.P., Geiduschek, E.P. Cell (1983) [Pubmed]
  12. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Plotch, S.J., Bouloy, M., Ulmanen, I., Krug, R.M. Cell (1981) [Pubmed]
  13. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Reeves, P.M., Bommarius, B., Lebeis, S., McNulty, S., Christensen, J., Swimm, A., Chahroudi, A., Chavan, R., Feinberg, M.B., Veach, D., Bornmann, W., Sherman, M., Kalman, D. Nat. Med. (2005) [Pubmed]
  14. Phenotypic mixing between N- and B-tropic murine leukemia viruses: infectious particles with dual sensitivity to Fv-1 restriction. Rein, A., Kashmiri, S.V., Bassin, R.H., Gerwin, B.L., Duran-Troise, G. Cell (1976) [Pubmed]
  15. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Sheehy, A.M., Gaddis, N.C., Choi, J.D., Malim, M.H. Nature (2002) [Pubmed]
  16. Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Yang, Z.Y., Duckers, H.J., Sullivan, N.J., Sanchez, A., Nabel, E.G., Nabel, G.J. Nat. Med. (2000) [Pubmed]
  17. Single amino-acid changes in HIV envelope affect viral tropism and receptor binding. Cordonnier, A., Montagnier, L., Emerman, M. Nature (1989) [Pubmed]
  18. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Sheehy, A.M., Gaddis, N.C., Malim, M.H. Nat. Med. (2003) [Pubmed]
  19. Association of human T-cell leukaemia/lymphoma virus with the Tac antigen marker for the human T-cell growth factor receptor. Lando, Z., Sarin, P., Megson, M., Greene, W.C., Waldman, T.A., Gallo, R.C., Broder, S. Nature (1983) [Pubmed]
  20. Brain tumors in owl monkeys inoculated with a human polyomavirus (JC virus). London, W.T., Houff, S.A., Madden, D.L., Fuccillo, D.A., Gravell, M., Wallen, W.C., Palmer, A.E., Sever, J.L., Padgett, B.L., Walker, D.L., ZuRhein, G.M., Ohashi, T. Science (1978) [Pubmed]
  21. The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules. Kerkau, T., Bacik, I., Bennink, J.R., Yewdell, J.W., Húnig, T., Schimpl, A., Schubert, U. J. Exp. Med. (1997) [Pubmed]
  22. Transformation of rat liver epithelial cells by Kirsten murine sarcoma virus. Rhim, J.S., Kim, C.M., Okigaki, T., Huebner, R.J. J. Natl. Cancer Inst. (1977) [Pubmed]
  23. The role of the adenovirus protease on virus entry into cells. Greber, U.F., Webster, P., Weber, J., Helenius, A. EMBO J. (1996) [Pubmed]
  24. HIV-1-associated uracil DNA glycosylase activity controls dUTP misincorporation in viral DNA and is essential to the HIV-1 life cycle. Priet, S., Gros, N., Navarro, J.M., Boretto, J., Canard, B., Quérat, G., Sire, J. Mol. Cell (2005) [Pubmed]
  25. The HIV-1 vpr protein acts as a negative regulator of apoptosis in a human lymphoblastoid T cell line: possible implications for the pathogenesis of AIDS. Conti, L., Rainaldi, G., Matarrese, P., Varano, B., Rivabene, R., Columba, S., Sato, A., Belardelli, F., Malorni, W., Gessani, S. J. Exp. Med. (1998) [Pubmed]
  26. Interferons and bacterial lipopolysaccharide protect macrophages from productive infection by human immunodeficiency virus in vitro. Kornbluth, R.S., Oh, P.S., Munis, J.R., Cleveland, P.H., Richman, D.D. J. Exp. Med. (1989) [Pubmed]
  27. Role of virion-associated glycosylphosphatidylinositol-linked proteins CD55 and CD59 in complement resistance of cell line-derived and primary isolates of HIV-1. Saifuddin, M., Parker, C.J., Peeples, M.E., Gorny, M.K., Zolla-Pazner, S., Ghassemi, M., Rooney, I.A., Atkinson, J.P., Spear, G.T. J. Exp. Med. (1995) [Pubmed]
  28. Localization of a gene for expression of mouse mammary tumor virus antigens in the GR/Mtv-2- mouse strain. Nusse, R., de Moes, J., Hilkens, J., van Nie, R. J. Exp. Med. (1980) [Pubmed]
  29. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Summerford, C., Bartlett, J.S., Samulski, R.J. Nat. Med. (1999) [Pubmed]
  30. Human immunodeficiency virus type 1 activates the classical pathway of complement by direct C1 binding through specific sites in the transmembrane glycoprotein gp41. Ebenbichler, C.F., Thielens, N.M., Vornhagen, R., Marschang, P., Arlaud, G.J., Dierich, M.P. J. Exp. Med. (1991) [Pubmed]
  31. Cystamine potently suppresses in vitro HIV replication in acutely and chronically infected human cells. Bergamini, A., Capozzi, M., Ghibelli, L., Dini, L., Salanitro, A., Milanese, G., Wagner, T., Beninati, S., Pesce, C.D., Amici, C. J. Clin. Invest. (1994) [Pubmed]
  32. A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. Kirnbauer, R., Hubbert, N.L., Wheeler, C.M., Becker, T.M., Lowy, D.R., Schiller, J.T. J. Natl. Cancer Inst. (1994) [Pubmed]
  33. Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins. Gaspar, M., Shenk, T. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
WikiGenes - Universities