The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Aplysia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Aplysia

 

Psychiatry related information on Aplysia

  • Evidence from Aplysia, Drosophila, mice, and rats shows that CREB-dependent transcription is required for the cellular events underlying long-term but not short-term memory [6].
  • Thus, classical conditioning in Aplysia appears to be mediated, in part, by LTP due to activation of NMDA-related receptors [7].
  • Recent studies of the cellular basis of feeding behavior in the marine mollusc Aplysia have focused on a neuron, C2, that has a variety of complex properties that determine the behavioral functions of the neuron [8].
  • We examined whether CCh-induced bursting is modified in ganglia taken from Aplysia that previously experienced treatments inhibiting feeding, such as satiation, head shock contingent or non-contingent with food, and training animals with an inedible food [9].
  • We used the Aplysia gill withdrawal reflex model system in order to study how enflurane effected both gill withdrawal adaptive behaviors and the activity of single identified neurones which are involved with the mediation of the gill withdrawal response [10].
 

High impact information on Aplysia

  • Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change [11].
  • The cAMP-responsive element-binding protein (CREB) has been implicated in the activation of protein synthesis required for long-term facilitation, a cellular model of memory in Aplysia [12].
  • We find that during this phase, the transcription factor Aplysia CCAAT enhancer-binding protein (ApC/EBP) is induced rapidly by 5-HT and by cAMP, even in the presence of protein synthesis inhibitors [13].
  • The insulin receptor is a tyrosine kinase receptor that is found in mammalian brain and at high concentrations in the bag cell neurons of Aplysia [14].
  • Direct modulation of Aplysia S-K+ channels by a 12-lipoxygenase metabolite of arachidonic acid [15].
 

Chemical compound and disease context of Aplysia

 

Biological context of Aplysia

 

Anatomical context of Aplysia

  • Here we describe a ubiquitous rat protein-endoplasmic reticulum (ER) and Golgi 30-kD protein (ERG30)-which shares structural characteristics with VAP-33, a 33-kD protein from Aplysia californica which was shown to interact with the synaptic protein VAMP [25].
  • Also, 5,7-DHT reduced 5-HT-dependent, but not dopamine-dependent, histofluorescence in Aplysia central ganglia [26].
  • Growth cones of Aplysia californica neurons were observed with video-enhanced contrast-differential interference contrast (VEC-DIC) microscopy as they turned at a border between poly-L-lysine-treated and untreated glass [27].
  • Cyclic AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cell neurons [28].
  • Leucine aminopeptidase-like activity in Aplysia hemolymph rapidly degrades biologically active alpha-bag cell peptide fragments [29].
 

Associations of Aplysia with chemical compounds

  • Voltage sensitivity of acetylcholine currents in Aplysia neurones in the presence of curare [30].
  • Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones [31].
  • H1 and H2 histamine receptors on Aplysia neurones [32].
  • Activity of an individual serotonergic neurone in Aplysia enhances synthesis of cyclic adenosine monophosphate [33].
  • However, we report here that after inhibiting AChE in a cholinergic synapse in Aplysia, we found an increase not only in postsynaptic responses to presynaptic stimulation and to ionophoretic application of ACh on postsynaptic receptors, but also to ionophoretic application of carbachol [34].
 

Gene context of Aplysia

  • Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38 [35].
  • A human Ro/SS-A autoantigen is the homologue of calreticulin and is highly homologous with onchocercal RAL-1 antigen and an aplysia "memory molecule" [36].
  • The yeast genes RHO1 and RHO2 are 70% and 57% identical, respectively, to the rho gene of the marine snail Aplysia, and they are 53% identical to each other [37].
  • Two alternative conformations of the Arg84(E10) guanidium group were observed, suggesting that it participates in ligand binding to Cgb, as is the case for Arg(E10) of Aplysia Mb and Lys(E10) of Ngb [38].
  • Furthermore, in transgenic Arabidopsis plants, induced expression of the Aplysia ADPR cyclase gene resulted in an increase in ADPR cyclase activity and cADPR levels, as well as elevated expression of ABA-responsive genes KIN2, RD22, RD29a, and COR47 (although to a lesser extent than after ABA induction) [39].
 

Analytical, diagnostic and therapeutic context of Aplysia

References

  1. A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine and acetylcholine receptors. Sasaki, K., Sato, M. Nature (1987) [Pubmed]
  2. Expression of the Aplysia californica rho gene in Escherichia coli: purification and characterization of its encoded p21 product. Anderson, P.S., Lacal, J.C. Mol. Cell. Biol. (1987) [Pubmed]
  3. Effects of cyclin-dependent kinase inhibitors on transcription and ocular circadian rhythm of Aplysia. Sankrithi, N., Eskin, A. J. Neurochem. (1999) [Pubmed]
  4. A pertussis toxin-sensitive 8-lipoxygenase pathway is activated by a nicotinic acetylcholine receptor in aplysia neurons. Tieman, T.L., Steel, D.J., Gor, Y., Kehoe, J., Schwartz, J.H., Feinmark, S.J. J. Neurophysiol. (2001) [Pubmed]
  5. Extracellular calcium dependence of contracture and modulation by serotonin in buccal muscle E1 of Aplysia. Ram, J.L., Shukla, U.A., Parti, R., Goines, R.L. J. Neurobiol. (1984) [Pubmed]
  6. CREB and memory. Silva, A.J., Kogan, J.H., Frankland, P.W., Kida, S. Annu. Rev. Neurosci. (1998) [Pubmed]
  7. Mediation of classical conditioning in Aplysia californica by long-term potentiation of sensorimotor synapses. Murphy, G.G., Glanzman, D.L. Science (1997) [Pubmed]
  8. Multiple roles of a histaminergic afferent neuron in the feeding behavior of Aplysia. Chiel, H.J., Weiss, K.R., Kupfermann, I. Trends Neurosci. (1990) [Pubmed]
  9. Characterization of buccal motor programs elicited by a cholinergic agonist applied to the cerebral ganglion of Aplysia californica. Susswein, A.J., Rosen, S.C., Gapon, S., Kupfermann, I. J. Comp. Physiol. A (1996) [Pubmed]
  10. Effects on enflurane on gill withdrawal behaviors and the ability of gill motor neurones to elicit gill contractions in aplysia. Komatsu, H., Lukowiak, K., Ogil, K. Journal of anesthesia. (1993) [Pubmed]
  11. Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Bartsch, D., Ghirardi, M., Skehel, P.A., Karl, K.A., Herder, S.P., Chen, M., Bailey, C.H., Kandel, E.R. Cell (1995) [Pubmed]
  12. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., Silva, A.J. Cell (1994) [Pubmed]
  13. C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Alberini, C.M., Ghirardi, M., Metz, R., Kandel, E.R. Cell (1994) [Pubmed]
  14. Regulation by insulin of a unique neuronal Ca2+ pool and of neuropeptide secretion. Jonas, E.A., Knox, R.J., Smith, T.C., Wayne, N.L., Connor, J.A., Kaczmarek, L.K. Nature (1997) [Pubmed]
  15. Direct modulation of Aplysia S-K+ channels by a 12-lipoxygenase metabolite of arachidonic acid. Buttner, N., Siegelbaum, S.A., Volterra, A. Nature (1989) [Pubmed]
  16. Serotonin-induced hyperpolarization of an indentified Aplysia neuron is mediated by cyclic AMP. Drummond, A.H., Benson, J.A., Levitan, I.B. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  17. Ca2+/calmodulin sensitivity may be common to all forms of neural adenylate cyclase. Eliot, L.S., Dudai, Y., Kandel, E.R., Abrams, T.W. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  18. Formation and action of 8-hydroxy-11,12-epoxy-5,9,14-icosatrienoic acid in Aplysia: a possible second messenger in neurons. Piomelli, D., Shapiro, E., Zipkin, R., Schwartz, J.H., Feinmark, S.J. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  19. Presynaptic transmitter content controls the number of quanta released at a neuro-neuronal cholinergic synapse. Poulain, B., Baux, G., Tauc, L. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  20. FMRFamide reverses protein phosphorylation produced by 5-HT and cAMP in Aplysia sensory neurons. Sweatt, J.D., Volterra, A., Edmonds, B., Karl, K.A., Siegelbaum, S.A., Kandel, E.R. Nature (1989) [Pubmed]
  21. G-protein beta gamma-subunits activate the cardiac muscarinic K+-channel via phospholipase A2. Kim, D., Lewis, D.L., Graziadei, L., Neer, E.J., Bar-Sagi, D., Clapham, D.E. Nature (1989) [Pubmed]
  22. Pharmacological dissociation of modulatory effects of serotonin in Aplysia sensory neurons. Mercer, A.R., Emptage, N.J., Carew, T.J. Science (1991) [Pubmed]
  23. Adenylate cyclase activation shifts the phase of a circadian pacemaker. Eskin, A., Takahashi, J.S. Science (1983) [Pubmed]
  24. Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. Mayford, M., Barzilai, A., Keller, F., Schacher, S., Kandel, E.R. Science (1992) [Pubmed]
  25. ERG30, a VAP-33-related protein, functions in protein transport mediated by COPI vesicles. Soussan, L., Burakov, D., Daniels, M.P., Toister-Achituv, M., Porat, A., Yarden, Y., Elazar, Z. J. Cell Biol. (1999) [Pubmed]
  26. Depletion of serotonin in the nervous system of Aplysia reduces the behavioral enhancement of gill withdrawal as well as the heterosynaptic facilitation produced by tail shock. Glanzman, D.L., Mackey, S.L., Hawkins, R.D., Dyke, A.M., Lloyd, P.E., Kandel, E.R. J. Neurosci. (1989) [Pubmed]
  27. Micropruning: the mechanism of turning of Aplysia growth cones at substrate borders in vitro. Burmeister, D.W., Goldberg, D.J. J. Neurosci. (1988) [Pubmed]
  28. Cyclic AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cell neurons. Forscher, P., Kaczmarek, L.K., Buchanan, J.A., Smith, S.J. J. Neurosci. (1987) [Pubmed]
  29. Leucine aminopeptidase-like activity in Aplysia hemolymph rapidly degrades biologically active alpha-bag cell peptide fragments. Squire, C.R., Talebian, M., Menon, J.G., Dekruyff, S., Lee, T.D., Shively, J.E., Rothman, B.S. J. Biol. Chem. (1991) [Pubmed]
  30. Voltage sensitivity of acetylcholine currents in Aplysia neurones in the presence of curare. Marty, A., Neild, T., Ascher, P. Nature (1976) [Pubmed]
  31. Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Siegelbaum, S.A., Camardo, J.S., Kandel, E.R. Nature (1982) [Pubmed]
  32. H1 and H2 histamine receptors on Aplysia neurones. Carpenter, D.O., Gaubatz, G.L. Nature (1975) [Pubmed]
  33. Activity of an individual serotonergic neurone in Aplysia enhances synthesis of cyclic adenosine monophosphate. Weiss, K.R., Schonberg, M., Mandelbaum, D.E., Kupfermann, I. Nature (1978) [Pubmed]
  34. Possible role of acetylcholinesterase in regulation of postsynaptic receptor efficacy at a central inhibitory synapse of Aplysia. Fossier, P., Baux, G., Tauc, L. Nature (1983) [Pubmed]
  35. Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. States, D.J., Walseth, T.F., Lee, H.C. Trends Biochem. Sci. (1992) [Pubmed]
  36. A human Ro/SS-A autoantigen is the homologue of calreticulin and is highly homologous with onchocercal RAL-1 antigen and an aplysia "memory molecule". McCauliffe, D.P., Zappi, E., Lieu, T.S., Michalak, M., Sontheimer, R.D., Capra, J.D. J. Clin. Invest. (1990) [Pubmed]
  37. Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Madaule, P., Axel, R., Myers, A.M. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  38. Structural basis of human cytoglobin for ligand binding. Sugimoto, H., Makino, M., Sawai, H., Kawada, N., Yoshizato, K., Shiro, Y. J. Mol. Biol. (2004) [Pubmed]
  39. ABA activates ADPR cyclase and cADPR induces a subset of ABA-responsive genes in Arabidopsis. Sánchez, J.P., Duque, P., Chua, N.H. Plant J. (2004) [Pubmed]
  40. Effects of ethanol on early potassium currents in Aplysia: cell specificity and influence of channel state. Treistman, S.N., Wilson, A. J. Neurosci. (1987) [Pubmed]
  41. A developmental gene (Tolloid/BMP-1) is regulated in Aplysia neurons by treatments that induce long-term sensitization. Liu, Q.R., Hattar, S., Endo, S., MacPhee, K., Zhang, H., Cleary, L.J., Byrne, J.H., Eskin, A. J. Neurosci. (1997) [Pubmed]
  42. Structural and ligand recognition characteristics of an acetylcholine-binding protein from Aplysia californica. Hansen, S.B., Talley, T.T., Radic, Z., Taylor, P. J. Biol. Chem. (2004) [Pubmed]
  43. Serotonin catabolism depends upon location of release: characterization of sulfated and gamma-glutamylated serotonin metabolites in Aplysia californica. Stuart, J.N., Zhang, X., Jakubowski, J.A., Romanova, E.V., Sweedler, J.V. J. Neurochem. (2003) [Pubmed]
  44. Antibodies against rat brain vesicle-associated membrane protein (synaptobrevin) prevent inhibition of acetylcholine release by tetanus toxin or botulinum neurotoxin type B. Poulain, B., Rossetto, O., Deloye, F., Schiavo, G., Tauc, L., Montecucco, C. J. Neurochem. (1993) [Pubmed]
 
WikiGenes - Universities