The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Astrocytes


Psychiatry related information on Astrocytes


High impact information on Astrocytes

  • Neither Olig gene is required for astrocytes [11].
  • We find that in addition to inducing neurogenesis, the bHLH transcription factor neurogenin (Ngn1) inhibits the differentiation of neural stem cells into astrocytes [12].
  • Here we transfer, in a tissue-specific manner, genes encoding activated forms of Ras and Akt to astrocytes and neural progenitors in mice [13].
  • In fact, ageing of the central nervous system in diverse mammalian species shares many features, such as atrophy of pyramidal neurons, synaptic atrophy, decrease of striatal dopamine receptors, accumulation of fluorescent pigments, cytoskeletal abnormalities, and reactive astrocytes and microglia [14].
  • This germinal region, which continually generates new neurons destined for the olfactory bulb, is composed of four cell types: migrating neuroblasts, immature precursors, astrocytes, and ependymal cells [1].

Chemical compound and disease context of Astrocytes


Biological context of Astrocytes


Anatomical context of Astrocytes


Associations of Astrocytes with chemical compounds


Gene context of Astrocytes

  • Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides [6].
  • EIF2B5 mutations compromise GFAP+ astrocyte generation in vanishing white matter leukodystrophy [34].
  • These effects were relatively specific; GDNF did not increase total neuron or astrocyte numbers nor did it increase transmitter uptake by gamma-aminobutyric-containing and serotonergic neurons [35].
  • LIF and BMP2 were found to act in synergy on primary fetal neural progenitor cells to induce astrocytes [36].
  • We have investigated the role of EGFR mutation in gliomagenesis, using avian retroviral vectors to transfer a mutant EGFR gene to glial precursors and astrocytes in transgenic mice expressing tv-a, a gene encoding the retrovirus receptor [37].

Analytical, diagnostic and therapeutic context of Astrocytes


  1. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Doetsch, F., Caillé, I., Lim, D.A., García-Verdugo, J.M., Alvarez-Buylla, A. Cell (1999) [Pubmed]
  2. Modeling mutations in the G1 arrest pathway in human gliomas: overexpression of CDK4 but not loss of INK4a-ARF induces hyperploidy in cultured mouse astrocytes. Holland, E.C., Hively, W.P., Gallo, V., Varmus, H.E. Genes Dev. (1998) [Pubmed]
  3. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Dai, C., Celestino, J.C., Okada, Y., Louis, D.N., Fuller, G.N., Holland, E.C. Genes Dev. (2001) [Pubmed]
  4. Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Hertz, L., Zielke, H.R. Trends Neurosci. (2004) [Pubmed]
  5. Macrophage- and astrocyte-derived transforming growth factor beta as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome. Wahl, S.M., Allen, J.B., McCartney-Francis, N., Morganti-Kossmann, M.C., Kossmann, T., Ellingsworth, L., Mai, U.E., Mergenhagen, S.E., Orenstein, J.M. J. Exp. Med. (1991) [Pubmed]
  6. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., Higgs, R., Liu, F., Malkani, S., Bales, K.R., Paul, S.M. Nat. Med. (2004) [Pubmed]
  7. Human immunodeficiency virus type 1 (HIV-1) tat induces nitric-oxide synthase in human astroglia. Liu, X., Jana, M., Dasgupta, S., Koka, S., He, J., Wood, C., Pahan, K. J. Biol. Chem. (2002) [Pubmed]
  8. Electroconvulsive shock and lidocaine-induced seizures in the rat activate astrocytes as measured by glial fibrillary acidic protein. Kragh, J., Bolwig, T.G., Woldbye, D.P., Jørgensen, O.S. Biol. Psychiatry (1993) [Pubmed]
  9. Differential fibronectin expression in activated C6 glial cells treated with ethanol. Ren, L.Q., Garrett, D.K., Syapin, M., Syapin, P.J. Mol. Pharmacol. (2000) [Pubmed]
  10. Reduced expression of NO-sensitive guanylyl cyclase in reactive astrocytes of Alzheimer disease, Creutzfeldt-Jakob disease, and multiple sclerosis brains. Baltrons, M.A., Pifarré, P., Ferrer, I., Carot, J.M., García, A. Neurobiol. Dis. (2004) [Pubmed]
  11. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Lu, Q.R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C.D., Rowitch, D.H. Cell (2002) [Pubmed]
  12. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Sun, Y., Nadal-Vicens, M., Misono, S., Lin, M.Z., Zubiaga, A., Hua, X., Fan, G., Greenberg, M.E. Cell (2001) [Pubmed]
  13. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Holland, E.C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R.E., Fuller, G.N. Nat. Genet. (2000) [Pubmed]
  14. Gene-expression profile of the ageing brain in mice. Lee, C.K., Weindruch, R., Prolla, T.A. Nat. Genet. (2000) [Pubmed]
  15. Protein kinase regulates tumor necrosis factor mRNA stability in virus-stimulated astrocytes. Lieberman, A.P., Pitha, P.M., Shin, M.L. J. Exp. Med. (1990) [Pubmed]
  16. Dysregulation of signal transduction pathways as a potential mechanism of nervous system alterations in HIV-1 gp120 transgenic mice and humans with HIV-1 encephalitis. Wyss-Coray, T., Masliah, E., Toggas, S.M., Rockenstein, E.M., Brooker, M.J., Lee, H.S., Mucke, L. J. Clin. Invest. (1996) [Pubmed]
  17. Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Gafni, J., Munsch, J.A., Lam, T.H., Catlin, M.C., Costa, L.G., Molinski, T.F., Pessah, I.N. Neuron (1997) [Pubmed]
  18. Two forms of cerebellar glial cells interact differently with neurons in vitro. Hatten, M.E., Liem, R.K., Mason, C.A. J. Cell Biol. (1984) [Pubmed]
  19. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Contreras, J.E., Sánchez, H.A., Eugenin, E.A., Speidel, D., Theis, M., Willecke, K., Bukauskas, F.F., Bennett, M.V., Sáez, J.C. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  20. Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Venance, L., Piomelli, D., Glowinski, J., Giaume, C. Nature (1995) [Pubmed]
  21. Differential tumor necrosis factor alpha expression by astrocytes from experimental allergic encephalomyelitis-susceptible and -resistant rat strains. Chung, I.Y., Norris, J.G., Benveniste, E.N. J. Exp. Med. (1991) [Pubmed]
  22. Role of p75 neurotrophin receptor in the neurotoxicity by beta-amyloid peptides and synergistic effect of inflammatory cytokines. Perini, G., Della-Bianca, V., Politi, V., Della Valle, G., Dal-Pra, I., Rossi, F., Armato, U. J. Exp. Med. (2002) [Pubmed]
  23. Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Aoyama, K., Suh, S.W., Hamby, A.M., Liu, J., Chan, W.Y., Chen, Y., Swanson, R.A. Nat. Neurosci. (2006) [Pubmed]
  24. Coronavirus induction of class I major histocompatibility complex expression in murine astrocytes is virus strain specific. Gilmore, W., Correale, J., Weiner, L.P. J. Exp. Med. (1994) [Pubmed]
  25. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Meda, L., Cassatella, M.A., Szendrei, G.I., Otvos, L., Baron, P., Villalba, M., Ferrari, D., Rossi, F. Nature (1995) [Pubmed]
  26. The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. van Noort, J.M., van Sechel, A.C., Bajramovic, J.J., el Ouagmiri, M., Polman, C.H., Lassmann, H., Ravid, R. Nature (1995) [Pubmed]
  27. Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Dewey, R.A., Morrissey, G., Cowsill, C.M., Stone, D., Bolognani, F., Dodd, N.J., Southgate, T.D., Klatzmann, D., Lassmann, H., Castro, M.G., Löwenstein, P.R. Nat. Med. (1999) [Pubmed]
  28. Selective inhibition of neurite outgrowth on mature astrocytes by Thy-1 glycoprotein. Tiveron, M.C., Barboni, E., Pliego Rivero, F.B., Gormley, A.M., Seeley, P.J., Grosveld, F., Morris, R. Nature (1992) [Pubmed]
  29. Structure, expression and function of a schwannoma-derived growth factor. Kimura, H., Fischer, W.H., Schubert, D. Nature (1990) [Pubmed]
  30. Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-golgi elements into a reticulum. Cooper, M.S., Cornell-Bell, A.H., Chernjavsky, A., Dani, J.W., Smith, S.J. Cell (1990) [Pubmed]
  31. Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids. Usowicz, M.M., Gallo, V., Cull-Candy, S.G. Nature (1989) [Pubmed]
  32. Glutamate-mediated astrocyte-neuron signalling. Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K., Jeftinija, S., Haydon, P.G. Nature (1994) [Pubmed]
  33. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B.L., Pozzan, T., Volterra, A. Nature (1998) [Pubmed]
  34. EIF2B5 mutations compromise GFAP+ astrocyte generation in vanishing white matter leukodystrophy. Dietrich, J., Lacagnina, M., Gass, D., Richfield, E., Mayer-Pröschel, M., Noble, M., Torres, C., Pröschel, C. Nat. Med. (2005) [Pubmed]
  35. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Lin, L.F., Doherty, D.H., Lile, J.D., Bektesh, S., Collins, F. Science (1993) [Pubmed]
  36. Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Nakashima, K., Yanagisawa, M., Arakawa, H., Kimura, N., Hisatsune, T., Kawabata, M., Miyazono, K., Taga, T. Science (1999) [Pubmed]
  37. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Holland, E.C., Hively, W.P., DePinho, R.A., Varmus, H.E. Genes Dev. (1998) [Pubmed]
  38. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. Krumbholz, M., Theil, D., Derfuss, T., Rosenwald, A., Schrader, F., Monoranu, C.M., Kalled, S.L., Hess, D.M., Serafini, B., Aloisi, F., Wekerle, H., Hohlfeld, R., Meinl, E. J. Exp. Med. (2005) [Pubmed]
  39. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. Cole, K.E., Strick, C.A., Paradis, T.J., Ogborne, K.T., Loetscher, M., Gladue, R.P., Lin, W., Boyd, J.G., Moser, B., Wood, D.E., Sahagan, B.G., Neote, K. J. Exp. Med. (1998) [Pubmed]
  40. Localization of neuronal and glial glutamate transporters. Rothstein, J.D., Martin, L., Levey, A.I., Dykes-Hoberg, M., Jin, L., Wu, D., Nash, N., Kuncl, R.W. Neuron (1994) [Pubmed]
  41. Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis. Eddleston, M., de la Torre, J.C., Oldstone, M.B., Loskutoff, D.J., Edgington, T.S., Mackman, N. J. Clin. Invest. (1993) [Pubmed]
WikiGenes - Universities