The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Cerebral Cortex

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cerebral Cortex


Psychiatry related information on Cerebral Cortex


High impact information on Cerebral Cortex

  • The hyh (hydrocephalus with hop gait) mouse shows a markedly small cerebral cortex at birth and dies postnatally from progressive enlargement of the ventricular system [11].
  • Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex [12].
  • Lissencephaly ("smooth brain," from "lissos," meaning smooth, and "encephalos," meaning brain) is a severe developmental disorder in which neuronal migration is impaired, leading to a thickened cerebral cortex whose normally folded contour is simplified and smooth [13].
  • Layering of neurons in the cerebral cortex and cerebellum requires Reelin, an extracellular matrix protein, and mammalian Disabled (mDab1), a cytosolic protein that activates tyrosine kinases [14].
  • In the caudate nucleus of choreic brain, both enzyme activities were markedly lower, with significant decreases in muscarinic cholinergic and serotonin receptor binding, whereas enzyme activities and receptor binding were unchanged in the cerebral cortex [15].

Chemical compound and disease context of Cerebral Cortex


Biological context of Cerebral Cortex


Anatomical context of Cerebral Cortex


Associations of Cerebral Cortex with chemical compounds


Gene context of Cerebral Cortex

  • Here we demonstrate that the doubly transgenic progeny from a cross between line Tg2576 and a mutant PS1M146L transgenic line develop large numbers of fibrillar A beta deposits in cerebral cortex and hippocampus far earlier than their singly transgenic Tg2576 littermates [36].
  • Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression [37].
  • Here, we show that Hsf2-/- cerebral cortex displays mispositioning of neurons of superficial layers [37].
  • Mammalian homeogenes of the Emx family, Emx1 and Emx2, are expressed in the developing cerebral cortex and are involved in the patterning of the rostral brain [38].
  • Such endothelial dysfunction was not found in transgenic mice expressing both APP and superoxide dismutase-1 (SOD1) or in APP transgenics in which SOD was topically applied to the cerebral cortex [39].

Analytical, diagnostic and therapeutic context of Cerebral Cortex


  1. Rapid correction of hyponatremia causes demyelination: relation to central pontine myelinolysis. Kleinschmidt-DeMasters, B.K., Norenberg, M.D. Science (1981) [Pubmed]
  2. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Zhu, Y., Romero, M.I., Ghosh, P., Ye, Z., Charnay, P., Rushing, E.J., Marth, J.D., Parada, L.F. Genes Dev. (2001) [Pubmed]
  3. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism. Silva, J.E., Matthews, P.S. J. Clin. Invest. (1984) [Pubmed]
  4. Effect of piracetam on level of consciousness after neurosurgery. Richardson, A.E., Bereen, F.J. Lancet (1977) [Pubmed]
  5. Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. Lindholm, D., Castrén, E., Kiefer, R., Zafra, F., Thoenen, H. J. Cell Biol. (1992) [Pubmed]
  6. Reciprocal changes in corticotropin-releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer's disease. De Souza, E.B., Whitehouse, P.J., Kuhar, M.J., Price, D.L., Vale, W.W. Nature (1986) [Pubmed]
  7. Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington's disease. Emerich, D.F., Winn, S.R., Hantraye, P.M., Peschanski, M., Chen, E.Y., Chu, Y., McDermott, P., Baetge, E.E., Kordower, J.H. Nature (1997) [Pubmed]
  8. The function of dream sleep. Crick, F., Mitchison, G. Nature (1983) [Pubmed]
  9. Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Woo, T.U., Walsh, J.P., Benes, F.M. Arch. Gen. Psychiatry (2004) [Pubmed]
  10. Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Contos, J.J., Fukushima, N., Weiner, J.A., Kaushal, D., Chun, J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  11. The hyh mutation uncovers roles for alpha Snap in apical protein localization and control of neural cell fate. Chae, T.H., Kim, S., Marz, K.E., Hanson, P.I., Walsh, C.A. Nat. Genet. (2004) [Pubmed]
  12. Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Sheen, V.L., Ganesh, V.S., Topcu, M., Sebire, G., Bodell, A., Hill, R.S., Grant, P.E., Shugart, Y.Y., Imitola, J., Khoury, S.J., Guerrini, R., Walsh, C.A. Nat. Genet. (2004) [Pubmed]
  13. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Hong, S.E., Shugart, Y.Y., Huang, D.T., Shahwan, S.A., Grant, P.E., Hourihane, J.O., Martin, N.D., Walsh, C.A. Nat. Genet. (2000) [Pubmed]
  14. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R.E., Richardson, J.A., Herz, J. Cell (1999) [Pubmed]
  15. Huntington's chorea. Changes in neurotransmitter receptors in the brain. Enna, S.J., Bird, E.D., Bennett, J.P., Bylund, D.B., Yamamura, H.I., Iversen, L.L., Snyder, S.H. N. Engl. J. Med. (1976) [Pubmed]
  16. Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer's disease and experimental cholinergic denervation. Mash, D.C., Flynn, D.D., Potter, L.T. Science (1985) [Pubmed]
  17. Oligomeric and polymeric aggregates formed by proteins containing expanded polyglutamine. Iuchi, S., Hoffner, G., Verbeke, P., Djian, P., Green, H. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  18. Changes in glutamate receptors on synaptic membranes associated with hepatic encephalopathy or hyperammonemia in the rabbit. Ferenci, P., Pappas, S.C., Munson, P.J., Jones, E.A. Hepatology (1984) [Pubmed]
  19. The cortical lesion of Huntington's disease: further neurochemical characterization, and reproduction of some of the histological and neurochemical features by N-methyl-D-aspartate lesions of rat cortex. Storey, E., Kowall, N.W., Finn, S.F., Mazurek, M.F., Beal, M.F. Ann. Neurol. (1992) [Pubmed]
  20. Estradiol modulates bcl-2 in cerebral ischemia: a potential role for estrogen receptors. Dubal, D.B., Shughrue, P.J., Wilson, M.E., Merchenthaler, I., Wise, P.M. J. Neurosci. (1999) [Pubmed]
  21. Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Geula, C., Wu, C.K., Saroff, D., Lorenzo, A., Yuan, M., Yankner, B.A. Nat. Med. (1998) [Pubmed]
  22. Glycogenolysis induced by serotonin in brain: identification of a new class of receptor. Quach, T.T., Rose, C., Duchemin, A.M., Schwartz, J.C. Nature (1982) [Pubmed]
  23. Cerebral glucose utilization: local changes during and after recovery from spreading cortical depression. Shinohara, M., Dollinger, B., Brown, G., Rapoport, S., Sokoloff, L. Science (1979) [Pubmed]
  24. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Vaccarino, F.M., Schwartz, M.L., Raballo, R., Nilsen, J., Rhee, J., Zhou, M., Doetschman, T., Coffin, J.D., Wyland, J.J., Hung, Y.T. Nat. Neurosci. (1999) [Pubmed]
  25. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Akbarian, S., Kim, J.J., Potkin, S.G., Hagman, J.O., Tafazzoli, A., Bunney, W.E., Jones, E.G. Arch. Gen. Psychiatry (1995) [Pubmed]
  26. L-glutamate has higher affinity than other amino acids for [3H]-D-AP5 binding sites in rat brain membranes. Olverman, H.J., Jones, A.W., Watkins, J.C. Nature (1984) [Pubmed]
  27. Somatostatin selectively inhibits noradrenaline release from hypothalamic neurones. Göthert, M. Nature (1980) [Pubmed]
  28. Regional changes of ciliary neurotrophic factor and nerve growth factor levels in post mortem spinal cord and cerebral cortex from patients with motor disease. Anand, P., Parrett, A., Martin, J., Zeman, S., Foley, P., Swash, M., Leigh, P.N., Cedarbaum, J.M., Lindsay, R.M., Williams-Chestnut, R.E. Nat. Med. (1995) [Pubmed]
  29. Nested expression domains of four homeobox genes in developing rostral brain. Simeone, A., Acampora, D., Gulisano, M., Stornaiuolo, A., Boncinelli, E. Nature (1992) [Pubmed]
  30. Powerful inhibition of kainic acid seizures by neuropeptide Y via Y5-like receptors. Woldbye, D.P., Larsen, P.J., Mikkelsen, J.D., Klemp, K., Madsen, T.M., Bolwig, T.G. Nat. Med. (1997) [Pubmed]
  31. Aspartate and glutamate as possible neurotransmitters of cells in layer 6 of the visual cortex. Baughman, R.W., Gilbert, C.D. Nature (1980) [Pubmed]
  32. Prostaglandins and the synergism between VIP and noradrenaline in the cerebral cortex. Schaad, N.C., Schorderet, M., Magistretti, P.J. Nature (1987) [Pubmed]
  33. Morphine and beta-endorphin inhibit release of noradrenaline from cerebral cortex but not of dopamine from rat striatum. Arbilla, S., Langer, S.Z. Nature (1978) [Pubmed]
  34. A cortical neuropeptide with neuronal depressant and sleep-modulating properties. de Lecea, L., Criado, J.R., Prospero-Garcia, O., Gautvik, K.M., Schweitzer, P., Danielson, P.E., Dunlop, C.L., Siggins, G.R., Henriksen, S.J., Sutcliffe, J.G. Nature (1996) [Pubmed]
  35. VIP and noradrenaline act synergistically to increase cyclic AMP in cerebral cortex. Magistretti, P.J., Schorderet, M. Nature (1984) [Pubmed]
  36. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Holcomb, L., Gordon, M.N., McGowan, E., Yu, X., Benkovic, S., Jantzen, P., Wright, K., Saad, I., Mueller, R., Morgan, D., Sanders, S., Zehr, C., O'Campo, K., Hardy, J., Prada, C.M., Eckman, C., Younkin, S., Hsiao, K., Duff, K. Nat. Med. (1998) [Pubmed]
  37. Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Chang, Y., Ostling, P., Akerfelt, M., Trouillet, D., Rallu, M., Gitton, Y., El Fatimy, R., Fardeau, V., Le Crom, S., Morange, M., Sistonen, L., Mezger, V. Genes Dev. (2006) [Pubmed]
  38. Emx homeogenes and mouse brain development. Cecchi, C., Boncinelli, E. Trends Neurosci. (2000) [Pubmed]
  39. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Iadecola, C., Zhang, F., Niwa, K., Eckman, C., Turner, S.K., Fischer, E., Younkin, S., Borchelt, D.R., Hsiao, K.K., Carlson, G.A. Nat. Neurosci. (1999) [Pubmed]
  40. Thyroxine increases nerve growth factor concentration in adult mouse brain. Walker, P., Weichsel, M.E., Fisher, D.A., Guo, S.M., Fisher, D.A. Science (1979) [Pubmed]
  41. Predominant and developmentally regulated expression of dynamin in neurons. Nakata, T., Iwamoto, A., Noda, Y., Takemura, R., Yoshikura, H., Hirokawa, N. Neuron (1991) [Pubmed]
  42. Calcium transport abnormality in uremic rat brain synaptosomes. Fraser, C.L., Sarnacki, P., Arieff, A.I. J. Clin. Invest. (1985) [Pubmed]
  43. Cholecystokinin-immunoreactive neurons in rat and monkey cerebral cortex make symmetric synapses and have intimate associations with blood vessels. Hendry, S.H., Jones, E.G., Beinfeld, M.C. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  44. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Bonaglia, M.C., Giorda, R., Borgatti, R., Felisari, G., Gagliardi, C., Selicorni, A., Zuffardi, O. Am. J. Hum. Genet. (2001) [Pubmed]
WikiGenes - Universities