The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Superior Colliculus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Superior Colliculus

 

Psychiatry related information on Superior Colliculus

 

High impact information on Superior Colliculus

  • Here we show that injection of BDNF into the optic tectum of live Xenopus laevis tadpoles increased the branching and complexity of optic axon terminal arbors [8].
  • Here I report that the duration of evoked NMDA-receptor-mediated excitatory postsynaptic currents (e.p.s.cs) in the superior colliculus is several times longer at early developmental stages compared to that measured in older animals [9].
  • The question has arisen whether dendritically release DA might also influence these neurones which, to a large extent, project to ventromedial thalamus (VM) and superior colliculus [10].
  • The use of this technique provides evidence that an nAChR associated with the goldfish retinotectal projection is synthesized in the retina and transported to the optic tectum, which suggests a presynaptic site of acetylcholine action on retinal terminals [11].
  • Removal of one eye of a rat depleted adenosine receptors in the contralateral superior colliculus, suggesting that the receptors occur on axon terminals of excitatory projections from retinal ganglion cells [12].
 

Chemical compound and disease context of Superior Colliculus

 

Biological context of Superior Colliculus

 

Anatomical context of Superior Colliculus

 

Associations of Superior Colliculus with chemical compounds

  • Apomorphine stimulated glucose utilization in a number of other cerebral structures, but only the effect in the superficial layer of the superior colliculus depended on an intact retinal input [18].
  • Disruption of N-methyl-D-aspartate (NMDA) receptor activity in the superior colliculus during this period interferes with map remodeling [28].
  • The biocytin method has proved useful by showing the dendritic trees of the superior colliculus cells of origin, the pathways taken by the axons (including the presence of collaterals), and the terminal fields both within and outside the GLd [29].
  • Take together, our observations suggest that there may be a cholinergic input to the SpL and that the projection fibers from the SpL to the optic tectum (which are also stained with an antiserum to [Leu]enkephalin) may contain presynaptic nAcChoRs [30].
  • Temporal correlations between functional and molecular changes in NMDA receptors and GABA neurotransmission in the superior colliculus [31].
 

Gene context of Superior Colliculus

  • When endogenous BDNF within the developing superior colliculus was neutralised, the rate of programmed neuronal death increased [32].
  • Rostral optic tectum acquires caudal characteristics following ectopic engrailed expression [33].
  • The best-studied neural cadherin, N-cadherin, is concentrated at synapses made by retinal axons in the chick optic tectum and is required for the arborization of retinal axons in their target (retinorecipient) laminae [34].
  • Conversely, there was a significant increase in binding to AT1 receptors in the ipsilateral superior colliculus after seven days [35].
  • Subependymal radial glia cells were observed mainly in the optic tectum, exhibiting Vim and GFAP immunoreactivity [36].
 

Analytical, diagnostic and therapeutic context of Superior Colliculus

References

  1. Dendritic growth and remodeling of cat retinal ganglion cells during fetal and postnatal development. Ramoa, A.S., Campbell, G., Shatz, C.J. J. Neurosci. (1988) [Pubmed]
  2. Lineage of radial glia in the chicken optic tectum. Gray, G.E., Sanes, J.R. Development (1992) [Pubmed]
  3. Changes in glutamate receptor function in synaptic input to the superficial superior colliculus (SSC) with aging and in retinal degeneration in the Royal College of Surgeons (RCS) rat. Pothecary, C.A., Thompson, H., Salt, T.E. Neurobiol. Aging (2005) [Pubmed]
  4. Adenovirus-mediated gene transfer to retinal ganglion cells. Cayouette, M., Gravel, C. Invest. Ophthalmol. Vis. Sci. (1996) [Pubmed]
  5. Adenosine evokes potassium currents by protein kinase C activated via a novel signaling pathway in superior colliculus neurons. Nishizaki, T., Ikeuchi, Y. FEBS Lett. (1996) [Pubmed]
  6. Dissociation of d-amphetamine-induced locomotor activity and stereotype behaviour by lesions of the superior colliculus. Pope, S.G., Dean, P., Redgrave, P. Psychopharmacology (Berl.) (1980) [Pubmed]
  7. Spatio-temporal pattern of N-methyl-D-aspartate receptor NR1 mRNA expression during postnatal development of visual structures of the rat brain. Nowicka, D., Kaczmarek, L. J. Neurosci. Res. (1996) [Pubmed]
  8. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Cohen-Cory, S., Fraser, S.E. Nature (1995) [Pubmed]
  9. Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Hestrin, S. Nature (1992) [Pubmed]
  10. Dopaminergic activation of reticulata neurones in the substantia nigra. Ruffieux, A., Schultz, W. Nature (1980) [Pubmed]
  11. Acetylcholine receptor synthesis in retina and transport to optic tectum in goldfish. Henley, J.M., Lindstrom, J.M., Oswald, R.E. Science (1986) [Pubmed]
  12. Adenosine receptors: autoradiographic evidence for their location on axon terminals of excitatory neurons. Goodman, R.R., Kuhar, M.J., Hester, L., Snyder, S.H. Science (1983) [Pubmed]
  13. Increased serotonin in the developing superior colliculus does not alter the number or distribution of retinotectal ganglion cells. Crnko, T.A., Mooney, R.D., Crissman, R.S., Zheng, L., Rhoades, R.W. J. Comp. Neurol. (1996) [Pubmed]
  14. Cellular degeneration and synaptogenesis in the developing retina of the rat. Horsburgh, G.M., Sefton, A.J. J. Comp. Neurol. (1987) [Pubmed]
  15. Role of target tissue in regulating the development of retinal ganglion cells in the albino rat: effects of kainate lesions in the superior colliculus. Carpenter, P., Sefton, A.J., Dreher, B., Lim, W.L. J. Comp. Neurol. (1986) [Pubmed]
  16. Blockade of GABA receptors in superior colliculus protects against focally evoked limbic motor seizures. Gale, K., Pazos, A., Maggio, R., Japikse, K., Pritchard, P. Brain Res. (1993) [Pubmed]
  17. Locomotor activity of rats in open field after microinjection of procaine into superior colliculus or underlying reticular formation. Dean, P., Redgrave, P., Lewis, G. Behav. Brain Res. (1982) [Pubmed]
  18. Retina-dependent activation by apomorphine of metabolic activity in the superficial layer of the superior colliculus. McCulloch, J., Savaki, H.E., McCulloch, M.C., Sokoloff, L. Science (1980) [Pubmed]
  19. Prenatal development of retinocollicular projections in the cat: an anterograde tracer transport study. Williams, R.W., Chalupa, L.M. J. Neurosci. (1982) [Pubmed]
  20. An explanation for reflex blink hyperexcitability in Parkinson's disease. I. Superior colliculus. Basso, M.A., Powers, A.S., Evinger, C. J. Neurosci. (1996) [Pubmed]
  21. Retroviral transfer of antisense integrin alpha6 or alpha8 sequences results in laminar redistribution or clonal cell death in developing brain. Zhang, Z., Galileo, D.S. J. Neurosci. (1998) [Pubmed]
  22. A developmentally regulated antigen associated with neural cell and process migration. Mendez-Otero, R., Schlosshauer, B., Barnstable, C.J., Constantine-Paton, M. J. Neurosci. (1988) [Pubmed]
  23. Molecular cloning and characterization of B-cadherin, a novel chick cadherin. Napolitano, E.W., Venstrom, K., Wheeler, E.F., Reichardt, L.F. J. Cell Biol. (1991) [Pubmed]
  24. Specific modulation of dopamine expression in neuronal hybrid cells by primary cells from different brain regions. Choi, H.K., Won, L., Roback, J.D., Wainer, B.H., Heller, A. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  25. Regionalisation and acquisition of polarity in the optic tectum. Nakamura, H. Prog. Neurobiol. (2001) [Pubmed]
  26. The pharmacology of synapses formed by identified corticocollicular neurons in primary cultures of rat visual cortex. Huettner, J.E., Baughman, R.W. J. Neurosci. (1988) [Pubmed]
  27. The hamster circadian rhythm system includes nuclei of the subcortical visual shell. Marchant, E.G., Morin, L.P. J. Neurosci. (1999) [Pubmed]
  28. N-methyl-D-aspartate receptor antagonists disrupt the formation of a mammalian neural map. Simon, D.K., Prusky, G.T., O'Leary, D.D., Constantine-Paton, M. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  29. Evidence for separate pathways within the tecto-geniculate projection in the tree shrew. Diamond, I.T., Conley, M., Fitzpatrick, D., Raczkowski, D. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  30. Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in chick midbrain. Swanson, L.W., Lindstrom, J., Tzartos, S., Schmued, L.C., O'Leary, D.D., Cowan, W.M. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  31. Temporal correlations between functional and molecular changes in NMDA receptors and GABA neurotransmission in the superior colliculus. Shi, J., Aamodt, S.M., Constantine-Paton, M. J. Neurosci. (1997) [Pubmed]
  32. Brain-derived neurotrophic factor is an anterograde survival factor in the rat visual system. Caleo, M., Menna, E., Chierzi, S., Cenni, M.C., Maffei, L. Curr. Biol. (2000) [Pubmed]
  33. Rostral optic tectum acquires caudal characteristics following ectopic engrailed expression. Logan, C., Wizenmann, A., Drescher, U., Monschau, B., Bonhoeffer, F., Lumsden, A. Curr. Biol. (1996) [Pubmed]
  34. Expression of multiple cadherins and catenins in the chick optic tectum. Miskevich, F., Zhu, Y., Ranscht, B., Sanes, J.R. Mol. Cell. Neurosci. (1998) [Pubmed]
  35. Selective changes in angiotensin II AT1 and AT2 receptor subtypes in the rat superior colliculus following eye enucleation. Michels, K.M., Heemskerk, F.M., Saavedra, J.M. Neuroscience (1994) [Pubmed]
  36. Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost. Arochena, M., Anadón, R., Díaz-Regueira, S.M. J. Comp. Neurol. (2004) [Pubmed]
  37. Activity-dependent induction of tonic calcineurin activity mediates a rapid developmental downregulation of NMDA receptor currents. Shi, J., Townsend, M., Constantine-Paton, M. Neuron (2000) [Pubmed]
  38. Improvement of neuronal visual responses in the superior colliculus in Prph2(Rd2/Rd2) mice following gene therapy. Schlichtenbrede, F.C., Smith, A.J., Bainbridge, J.W., Thrasher, A.J., Salt, T.E., Ali, R.R. Mol. Cell. Neurosci. (2004) [Pubmed]
  39. Carbon-11-labeled KF15372: a potential central nervous system adenosine A1 receptor ligand. Furuta, R., Ishiwata, K., Kiyosawa, M., Ishii, S., Saito, N., Shimada, J., Endo, K., Suzuki, F., Senda, M. J. Nucl. Med. (1996) [Pubmed]
  40. Somatosensory projections to the superior colliculus of the anaesthetized cat. Abrahams, V.C., Clinton, R.J., Downey, D. J. Physiol. (Lond.) (1988) [Pubmed]
  41. The effect of biogenic monomines on rapid axonal transport in the rabbit optic nerve. Guy, J., Quigley, H.A., Anderson, D.R. Invest. Ophthalmol. Vis. Sci. (1978) [Pubmed]
 
WikiGenes - Universities