The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Acoustic Stimulation

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Acoustic Stimulation

 

Psychiatry related information on Acoustic Stimulation

 

High impact information on Acoustic Stimulation

 

Chemical compound and disease context of Acoustic Stimulation

  • Observed frequency and duration of amnesia to auditory stimulation after lorazepam was 58% and 3 hours, respectively (mean values), with marked diminuition of antirecall effect at 120 minutes [5].
  • Conversely, the non-selective agonist, N-ethyl-carboxamidoadenosine (NECA), was highly potent, the ED50 being 0.0005 mg/kg, i.p. In the absence of auditory stimulation, the adenosine receptor antagonists increased the incidence of both clonic and tonic seizures in DBA/2 mice [12].
 

Biological context of Acoustic Stimulation

 

Anatomical context of Acoustic Stimulation

 

Associations of Acoustic Stimulation with chemical compounds

  • Dose-response curves generated during acoustic stimulation by varying GABA ejection current were sigmoidal at all ages studied, and the range of slopes relating discharge rate to applied currents increased during the first 10 postnatal days [19].
  • Conversely, the indenopyrrole, eboracin, protected mice from seizures induced by auditory stimulation and altered the response to Metrazol [20].
  • In unanesthetized rats cocaine (0.3-10.0 mg/kg, i.v.) also decreased LC spontaneous discharge rate and LC discharge evoked by repeated auditory stimulation [21].
  • Reliability of low-frequency auditory stimulation studies associated with technetium-99m hexamethylpropylene amine oxime single-photon emission tomography [22].
  • 3. Dose-response curves were either sigmoidal or linear over the range that measurements were made, and maximum discharge rates evoked by high doses of glutamate in the youngest animals studied tended to be lower than those produced by acoustic stimulation alone in older animals [23].
 

Gene context of Acoustic Stimulation

 

Analytical, diagnostic and therapeutic context of Acoustic Stimulation

References

  1. Comparison of neuronal response patterns in the external and central nuclei of inferior colliculus during ethanol administration and ethanol withdrawal. Chakravarty, D.N., Faingold, C.L. Brain Res. (1998) [Pubmed]
  2. Baseline respiratory sinus arrhythmia and heart-rate responses during auditory stimulation of children with attention-deficit hyperactivity disorder. Shibagaki, M., Furuya, T. Perceptual and motor skills. (1997) [Pubmed]
  3. Synthesis and evaluation of pharmacological and pharmacokinetic properties of 11H-[1,2,4]triazolo[4,5-c][2,3]benzodiazepin-3(2H)-ones. Zappalà, M., Gitto, R., Bevacqua, F., Quartarone, S., Chimirri, A., Rizzo, M., De Sarro, G., De Sarro, A. J. Med. Chem. (2000) [Pubmed]
  4. Rapid eye movement (REM) sleep increases by auditory stimulation reverted with biperiden administration in normal volunteers. Salin-Pascual, R.J., Granados-Fuentes, D., Galicia-Polo, L., Nieves, E. Neuropsychopharmacology (1991) [Pubmed]
  5. The relation between lorazepam-induced auditory amnesia and auditory evoked potentials. Samra, S.K., Bradshaw, E.G., Pandit, S.K., Papanicolaou, A.C., Moore, B.D. Anesth. Analg. (1988) [Pubmed]
  6. Improved conditioned avoidance learning by oxytocin administration in high-emotional male Sprague-Dawley rats. Uvnäs-Moberg, K., Eklund, M., Hillegaart, V., Ahlenius, S. Regul. Pept. (2000) [Pubmed]
  7. The response to acoustic stimulation and the changes in brain amine levels after repeated administration of beta-phenylethylamine in rats. Yamada, M., Kiuchi, Y., Hashimoto, M., Oguchi, K., Yasuhara, H. Jpn. J. Pharmacol. (1991) [Pubmed]
  8. Hypothalamic neurons preferentially respond to female nest coo stimulation: demonstration of direct acoustic stimulation of luteinizing hormone release. Cheng, M.F., Peng, J.P., Johnson, P. J. Neurosci. (1998) [Pubmed]
  9. Clinical history, brain metabolism, and neuropsychological function in Alzheimer's disease. Cutler, N.R., Haxby, J.V., Duara, R., Grady, C.L., Kay, A.D., Kessler, R.M., Sundaram, M., Rapoport, S.I. Ann. Neurol. (1985) [Pubmed]
  10. Acute tryptophan depletion decreases intensity dependence of auditory evoked magnetic N1/P2 dipole source activity. Kähkönen, S., Jääskeläinen, I.P., Pennanen, S., Liesivuori, J., Ahveninen, J. Psychopharmacology (Berl.) (2002) [Pubmed]
  11. Fragile X mice develop sensory hyperreactivity to auditory stimuli. Chen, L., Toth, M. Neuroscience (2001) [Pubmed]
  12. Effects of adenosine receptor agonists and antagonists on audiogenic seizure-sensible DBA/2 mice. De Sarro, G., De Sarro, A., Di Paola, E.D., Bertorelli, R. Eur. J. Pharmacol. (1999) [Pubmed]
  13. Electroencephalographic effects and serum concentrations after intranasal and intravenous administration of diazepam to healthy volunteers. Lindhardt, K., Gizurarson, S., Stefánsson, S.B., Olafsson, D.R., Bechgaard, E. British journal of clinical pharmacology. (2001) [Pubmed]
  14. Single-cell and multiunit activity in freely moving rats after corticosterone administration. Feldman, S., Papir-Kricheli, D., Dafny, N. Exp. Neurol. (1983) [Pubmed]
  15. Different behavioral and electrographic effects of acoustic stimulation and dibutyryl cyclic AMP injection into the inferior colliculus in normal and in genetically epilepsy-prone rats. Ludvig, N., Moshé, S.L. Epilepsy Res. (1989) [Pubmed]
  16. Effects of neuronal activity on kainic acid neurotoxicity in the ventral cochlear nucleus. Mattox, D.E., Gulley, R.L., Bird, S.J., Ulrich, F.A. Neurosci. Lett. (1980) [Pubmed]
  17. Evaluating the protective role of the olivocochlear bundle against acoustic overexposure in rats by using Fos immunohistochemistry. Chen, T.J., Chen, S.S., Hsieh, Y.L. J. Neurol. Sci. (2000) [Pubmed]
  18. Prostaglandin synthesis by the cochlea of the guinea pig. Influence of aspirin, gentamicin, and acoustic stimulation. Escoubet, B., Amsallem, P., Ferrary, E., Tran Ba Huy, P. Prostaglandins (1985) [Pubmed]
  19. GABA actions within the caudal cochlear nucleus of developing kittens. Walsh, E.J., McGee, J., Fitzakerley, J.L. J. Neurophysiol. (1990) [Pubmed]
  20. Convulsive thresholds in mice: action of 6-hydroxydopamine and eboracin. Alexander, G.J., Kopeloff, L.M., Chatterjie, N. Exp. Neurol. (1985) [Pubmed]
  21. Cocaine effects on brain noradrenergic neurons of anesthetized and unanesthetized rats. Curtis, A.L., Conti, E., Valentino, R.J. Neuropharmacology (1993) [Pubmed]
  22. Reliability of low-frequency auditory stimulation studies associated with technetium-99m hexamethylpropylene amine oxime single-photon emission tomography. Le Scao, Y., Jezequel, J., Robier, A., Baulieu, J.L., Turzo, A., Guias, B., Morin, P.P. European journal of nuclear medicine. (1993) [Pubmed]
  23. Development of glutamate and NMDA sensitivity of neurons within the cochlear nuclear complex of kittens. Walsh, E.J., McGee, J., Fitzakerley, J.L. J. Neurophysiol. (1993) [Pubmed]
  24. Long lasting effect of a single audiogenic seizure on GABA turnover rates and steady-state levels. Clement, J., Ciesielski, L., Simler, S., Mandel, P. Neurochem. Res. (1989) [Pubmed]
  25. Development of auditory brainstem responses (ABRs) in Tshr mutant mice derived from euthyroid and hypothyroid dams. Sprenkle, P.M., McGee, J., Bertoni, J.M., Walsh, E.J. J. Assoc. Res. Otolaryngol. (2001) [Pubmed]
  26. Differential inhibition of stress-induced adrenocortical responses by 5-HT1A agonists and by 5-HT2 and 5-HT3 antagonists. Saphier, D., Farrar, G.E., Welch, J.E. Psychoneuroendocrinology (1995) [Pubmed]
  27. Neuronally modulated transcription of a glycine transporter in rat dorsal cochlear nucleus and nucleus of the medial trapezoid body. Barmack, N.H., Guo, H., Kim, H.J., Qian, H., Qian, Z. J. Comp. Neurol. (1999) [Pubmed]
  28. Increment of brain temporal perfusion during auditory stimulation. Preliminary study with technetium-99m HMPAO SPET. Le Scao, Y., Baulieu, J.L., Robier, A., Pourcelot, L., Beutter, P. European journal of nuclear medicine. (1991) [Pubmed]
  29. Ethanol withdrawal induces increased firing in inferior colliculus neurons associated with audiogenic seizure susceptibility. Faingold, C.L., Riaz, A. Exp. Neurol. (1995) [Pubmed]
  30. Assessment of fetal well-being using the nonstress test in the home setting. Naef, R.W., Morrison, J.C., Washburne, J.F., McLaughlin, B.N., Perry, K.G., Roberts, W.E. Obstetrics and gynecology. (1994) [Pubmed]
  31. Spectral dynamics of electroencephalographic activity during auditory information processing. Cacace, A.T., McFarland, D.J. Hear. Res. (2003) [Pubmed]
  32. Effect of ethanol on BOLD response to acoustic stimulation: implications for neuropharmacological fMRI. Seifritz, E., Bilecen, D., Hänggi, D., Haselhorst, R., Radü, E.W., Wetzel, S., Seelig, J., Scheffler, K. Psychiatry research. (2000) [Pubmed]
 
WikiGenes - Universities