The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Bile Ducts

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bile Ducts

 

High impact information on Bile Ducts

  • Biliary epithelium in Hes1-/- mice ectopically expresses the proendocrine gene Neurog3 (refs. 12,13), differentiates into endocrine and exocrine cells and forms acini and islet-like structures in the mutant bile ducts [6].
  • Isoniazid and bile duct cancer [7].
  • Engrafted human cells were localized in clusters surrounding the bile ducts, in close proximity to SDF-1-expressing epithelial cells, and differentiated into albumin-producing cells [8].
  • Our aim was to ascertain if Ctsb inactivation attenuates liver injury, inflammation, and fibrogenesis after bile duct ligation (BDL) [9].
  • We describe here a population of 11-day postcoitus c-Kit(low)(CD45/TER119)- liver progenitors that selectively expressed hepatospecific genes and proteins in vivo, was self-maintained in vitro by long-term proliferation, and simultaneously differentiated into functional hepatocytes and bile duct cells [10].
 

Chemical compound and disease context of Bile Ducts

 

Biological context of Bile Ducts

 

Anatomical context of Bile Ducts

 

Associations of Bile Ducts with chemical compounds

  • We suggest that Fasciola hepatica, which synthesizes and releases large amounts of proline, induces enlargement of the bile duct by a similar mechanism [1].
  • Induction of fibrogenesis by either bile duct ligation or carbon tetrachloride administration was associated with a substantial increase in mRNA for types I and III collagen in nonparenchymal cells [25].
  • Duct bile was obtained from three dogs (n = 12) during variable taurocholate infusion [26].
  • We investigated, in isolated bile duct units (IBDU) and cholangiocytes isolated from normal rat liver, the occurrence of acetylcholine (ACh) receptors, and the role and mechanisms of ACh in the regulation of the Cl-/HCO3- exchanger activity [27].
  • Stimulation of bile duct epithelial secretion by glybenclamide in normal and cholestatic rat liver [28].
 

Gene context of Bile Ducts

  • RESULTS: In cirrhotic tissue, c-kit- or CD34-positive cells were located in the portal tracts surrounding bile ducts [29].
  • Consequences of bile duct obstruction on intestinal expression and function of multidrug resistance-associated protein 2 [30].
  • We evaluated the role of VEGF in the regulation of cholangiocyte proliferation in rats that underwent bile duct ligation [31].
  • Hepatic cysts and bile duct proliferation, characteristic of ADPKD, were also seen [32].
  • In terms of the pathophysiology, interest has been focused on the role of secretory low-molecular-weight phospholipases A2 (sPLA2s) as inflammatory mediators or factors modulating cell functions via their specific sPLA2-receptor, and also on the production and secretion of altered mucin molecules from the inflamed bile ducts [33].
 

Analytical, diagnostic and therapeutic context of Bile Ducts

References

  1. Fascioliasis: role of proline in bile duct hyperplasia. Isseroff, H., Sawma, J.T., Reino, D. Science (1977) [Pubmed]
  2. Liver cirrhosis induces renal and liver phospholipase A2 activity in rats. Vishwanath, B.S., Frey, F.J., Escher, G., Reichen, J., Frey, B.M. J. Clin. Invest. (1996) [Pubmed]
  3. Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN-gamma in experimental biliary atresia. Shivakumar, P., Campbell, K.M., Sabla, G.E., Miethke, A., Tiao, G., McNeal, M.M., Ward, R.L., Bezerra, J.A. J. Clin. Invest. (2004) [Pubmed]
  4. Biliary fibrosis associated with altered bile composition in a mouse model of erythropoietic protoporphyria. Meerman, L., Koopen, N.R., Bloks, V., Van Goor, H., Havinga, R., Wolthers, B.G., Kramer, W., Stengelin, S., Müller, M., Kuipers, F., Jansen, P.L. Gastroenterology (1999) [Pubmed]
  5. Origin, pattern, and mechanism of bile duct proliferation following biliary obstruction in the rat. Slott, P.A., Liu, M.H., Tavoloni, N. Gastroenterology (1990) [Pubmed]
  6. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Sumazaki, R., Shiojiri, N., Isoyama, S., Masu, M., Keino-Masu, K., Osawa, M., Nakauchi, H., Kageyama, R., Matsui, A. Nat. Genet. (2004) [Pubmed]
  7. Isoniazid and bile duct cancer. Lowenfels, A.B., Norman, J. JAMA (1978) [Pubmed]
  8. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. Kollet, O., Shivtiel, S., Chen, Y.Q., Suriawinata, J., Thung, S.N., Dabeva, M.D., Kahn, J., Spiegel, A., Dar, A., Samira, S., Goichberg, P., Kalinkovich, A., Arenzana-Seisdedos, F., Nagler, A., Hardan, I., Revel, M., Shafritz, D.A., Lapidot, T. J. Clin. Invest. (2003) [Pubmed]
  9. Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis. Canbay, A., Guicciardi, M.E., Higuchi, H., Feldstein, A., Bronk, S.F., Rydzewski, R., Taniai, M., Gores, G.J. J. Clin. Invest. (2003) [Pubmed]
  10. A population of c-Kit(low)(CD45/TER119)- hepatic cell progenitors of 11-day postcoitus mouse embryo liver reconstitutes cell-depleted liver organoids. Minguet, S., Cortegano, I., Gonzalo, P., Martínez-Marin, J.A., de Andrés, B., Salas, C., Melero, D., Gaspar, M.L., Marcos, M.A. J. Clin. Invest. (2003) [Pubmed]
  11. Ursodeoxycholic acid limits liver histologic alterations and portal hypertension induced by bile duct ligation in the rat. Poo, J.L., Feldmann, G., Erlinger, S., Braillon, A., Gaudin, C., Dumont, M., Lebrec, D. Gastroenterology (1992) [Pubmed]
  12. Structure-function correlation of tight junctional impairment after intrahepatic and extrahepatic cholestasis in rat liver. Rahner, C., Stieger, B., Landmann, L. Gastroenterology (1996) [Pubmed]
  13. Inhibition of the NA(+)/H(+) exchanger reduces rat hepatic stellate cell activity and liver fibrosis: an in vitro and in vivo study. Benedetti, A., Di Sario, A., Casini, A., Ridolfi, F., Bendia, E., Pigini, P., Tonnini, C., D'Ambrosio, L., Feliciangeli, G., Macarri, G., Svegliati-Baroni, G. Gastroenterology (2001) [Pubmed]
  14. Scanning electron microscopy of the rat liver. Studies of the effect of taurolithocholate and other models of cholestasis. Layden, T.J., Schwarz, n.u.l.l., Boyer, J.L. Gastroenterology (1975) [Pubmed]
  15. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Kobayashi, S., Werneburg, N.W., Bronk, S.F., Kaufmann, S.H., Gores, G.J. Gastroenterology (2005) [Pubmed]
  16. Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis. Beuers, U., Nathanson, M.H., Isales, C.M., Boyer, J.L. J. Clin. Invest. (1993) [Pubmed]
  17. Localization and characterization of secretin binding sites expressed by rat bile duct epithelium. Farouk, M., Vigna, S.R., McVey, D.C., Meyers, W.C. Gastroenterology (1992) [Pubmed]
  18. Cholangiocytes express the aquaporin CHIP and transport water via a channel-mediated mechanism. Roberts, S.K., Yano, M., Ueno, Y., Pham, L., Alpini, G., Agre, P., LaRusso, N.F. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  19. Prevention of bile acid-induced apoptosis by betaine in rat liver. Graf, D., Kurz, A.K., Reinehr, R., Fischer, R., Kircheis, G., Häussinger, D. Hepatology (2002) [Pubmed]
  20. Regulation of membrane chloride currents in rat bile duct epithelial cells. Fitz, J.G., Basavappa, S., McGill, J., Melhus, O., Cohn, J.A. J. Clin. Invest. (1993) [Pubmed]
  21. Active participation of CCR5(+)CD8(+) T lymphocytes in the pathogenesis of liver injury in graft-versus-host disease. Murai, M., Yoneyama, H., Harada, A., Yi, Z., Vestergaard, C., Guo, B., Suzuki, K., Asakura, H., Matsushima, K. J. Clin. Invest. (1999) [Pubmed]
  22. Expression of fibronectin and laminin in the rat liver after partial hepatectomy, during carcinogenesis, and in transplantable hepatocellular carcinomas. Sell, S., Ruoslahti, E. J. Natl. Cancer Inst. (1982) [Pubmed]
  23. Evidence for H+ secretion by the in vivo canine gallbladder. Rege, R.V., Moore, E.W. Gastroenterology (1987) [Pubmed]
  24. Rejection of murine congenic bile ducts: a model for immune-mediated bile duct disease. Schreiber, R.A., Kleinman, R.E., Barksdale, E.M., Maganaro, T.F., Donahoe, P.K. Gastroenterology (1992) [Pubmed]
  25. Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. Maher, J.J., McGuire, R.F. J. Clin. Invest. (1990) [Pubmed]
  26. Pathogenesis of calcium-containing gallstones. Canine ductular bile, but not gallbladder bile, is supersaturated with calcium carbonate. Rege, R.V., Moore, E.W. J. Clin. Invest. (1986) [Pubmed]
  27. Role and mechanisms of action of acetylcholine in the regulation of rat cholangiocyte secretory functions. Alvaro, D., Alpini, G., Jezequel, A.M., Bassotti, C., Francia, C., Fraioli, F., Romeo, R., Marucci, L., Le Sage, G., Glaser, S.S., Benedetti, A. J. Clin. Invest. (1997) [Pubmed]
  28. Stimulation of bile duct epithelial secretion by glybenclamide in normal and cholestatic rat liver. Nathanson, M.H., Burgstahler, A.D., Mennone, A., Dranoff, J.A., Rios-Velez, L. J. Clin. Invest. (1998) [Pubmed]
  29. Human hepatic stem-like cells isolated using c-kit or CD34 can differentiate into biliary epithelium. Crosby, H.A., Kelly, D.A., Strain, A.J. Gastroenterology (2001) [Pubmed]
  30. Consequences of bile duct obstruction on intestinal expression and function of multidrug resistance-associated protein 2. Dietrich, C.G., Geier, A., Salein, N., Lammert, F., Roeb, E., Oude Elferink, R.P., Matern, S., Gartung, C. Gastroenterology (2004) [Pubmed]
  31. Vascular endothelial growth factor stimulates rat cholangiocyte proliferation via an autocrine mechanism. Gaudio, E., Barbaro, B., Alvaro, D., Glaser, S., Francis, H., Ueno, Y., Meininger, C.J., Franchitto, A., Onori, P., Marzioni, M., Taffetani, S., Fava, G., Stoica, G., Venter, J., Reichenbach, R., De Morrow, S., Summers, R., Alpini, G. Gastroenterology (2006) [Pubmed]
  32. A human PKD1 transgene generates functional polycystin-1 in mice and is associated with a cystic phenotype. Pritchard, L., Sloane-Stanley, J.A., Sharpe, J.A., Aspinwall, R., Lu, W., Buckle, V., Strmecki, L., Walker, D., Ward, C.J., Alpers, C.E., Zhou, J., Wood, W.G., Harris, P.C. Hum. Mol. Genet. (2000) [Pubmed]
  33. Secretory low-molecular-weight phospholipases A2 and their specific receptor in bile ducts of patients with intrahepatic calculi: factors of chronic proliferative cholangitis. Shoda, J., Kano, M., Asano, T., Irimura, T., Ueda, T., Iwasaki, R., Furukawa, M., Kamiya, J., Nimura, Y., Todoroki, T., Matsuzaki, Y., Tanaka, N. Hepatology (1999) [Pubmed]
  34. Effects of ethinyl estradiol and phenobarbital on bile acid synthesis and biliary bile acid and cholesterol excretion. Davis, R.A., Kern, F. Gastroenterology (1976) [Pubmed]
  35. Regrowth of the rat biliary tree after 70% partial hepatectomy is coupled to increased secretin-induced ductal secretion. Lesage, G., Glaser, S.S., Gubba, S., Robertson, W.E., Phinizy, J.L., Lasater, J., Rodgers, R.E., Alpini, G. Gastroenterology (1996) [Pubmed]
  36. Alterations in vesicle transport and cell polarity in rat hepatocytes subjected to mechanical or chemical cholestasis. Török, N.J., Larusso, E.M., McNiven, M.A. Gastroenterology (2001) [Pubmed]
  37. Occurrence of alpha-fetoprotein, Regan isoenzyme, and variant alkaline phosphatase in the serum of a patient with gastric cancer. Nishimura, H., Okamoto, Y., Takahashi, M., Fujita, T. Gastroenterology (1976) [Pubmed]
  38. Suppression of proliferative cholangitis in a rat model with direct adenovirus-mediated retinoblastoma gene transfer to the biliary tract. Terao, R., Honda, K., Hatano, E., Uehara, T., Yamamoto, M., Yamaoka, Y. Hepatology (1998) [Pubmed]
 
WikiGenes - Universities