The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Neural Crest

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Neural Crest


Psychiatry related information on Neural Crest


High impact information on Neural Crest

  • Analysis of microarray data from human nevi shows that the expression pattern of Slug, a master regulator of neural crest cell specification and migration, correlates with those of other genes that are important for neural crest cell migrations during development [9].
  • These results establish a new and essential role for Nf1 in endothelial cells and confirm the requirement for neurofibromin in the neural crest [10].
  • SIP1 seems to have crucial roles in normal embryonic neural and neural crest development [11].
  • Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator [12].
  • These results therefore indicate an essential stage- and tissue-specific role for Crkol in the function, differentiation, and/or survival of neural crest cells during development [13].

Chemical compound and disease context of Neural Crest


Biological context of Neural Crest

  • The observed defects are consistent with abnormalities in the survival and/or migration of cardiac neural crest early in embryogenesis and establish an essential role for neurotrophin 3 in regulating the development of the mammalian heart [19].
  • Using a positional candidacy strategy, we mapped TFAP2B, encoding a transcription factor expressed in neural crest cells, to the Char syndrome critical region and identified missense mutations altering conserved residues in two affected families [20].
  • Here we show that frog Zic2 encodes a zinc-finger transcription factor of the Gli superfamily which is expressed in stripes that alternate with those in which primary neurons differentiate and overlap the domains of floorplate and neural crest progenitors [21].
  • Important progress has been made in dissecting the roles of bone morphogenetic protein, Wnt and Notch signalling systems and their associated downstream transcription factors in the control of neural crest cell differentiation [22].
  • Expression of the trk proto-oncogene is restricted to the sensory cranial and spinal ganglia of neural crest origin in mouse development [23].

Anatomical context of Neural Crest


Associations of Neural Crest with chemical compounds

  • It is possible that a major mechanism of isotretinoin teratogenesis is a deleterious effect on cephalic neural-crest cell activity that results in the observed craniofacial, cardiac, and thymic malformations [28].
  • Xotch delta E inhibits the early expression of epidermal and neural crest markers yet enhances and extends the response of animal caps to mesodermal and neural induction [29].
  • Acetylcholine synthesis by mesencephalic neural crest cells in the process of migration in vivo [30].
  • Inhibition of neural crest cell attachment by integrin antisense oligonucleotides [31].
  • The mammalian transcription factor AP-2 is a sequence-specific DNA-binding protein expressed in neural crest lineages and regulated by retinoic acid [32].

Gene context of Neural Crest

  • The identification of Sox10 as the gene mutated in Dom mice (B.H. et al., manuscript submitted) prompted us to analyse the role of its human homologue SOX10 in neural crest defects [33].
  • As enteric neurons are derived from the vagal neural crest, HSCR is regarded as a neurocristopathy [34].
  • Deficiency in neurofibromin (encoded by Nf1) in mice results in mid-embryonic lethality owing to cardiac abnormalities previously thought to be secondary to cardiac neural-crest defects [10].
  • In Xenopus embryos, LRP6 activated Wnt-Fz signalling, and induced Wnt responsive genes, dorsal axis duplication and neural crest formation [35].
  • Pax7 can substitute for Pax3 function in dorsal neural tube, neural crest cell, and somite development, but not in the formation of muscles involving long-range migration of muscle progenitor cells [36].

Analytical, diagnostic and therapeutic context of Neural Crest


  1. Mutations in the neurofibromatosis 1 gene in sporadic malignant melanoma cell lines. Andersen, L.B., Fountain, J.W., Gutmann, D.H., Tarlé, S.A., Glover, T.W., Dracopoli, N.C., Housman, D.E., Collins, F.S. Nat. Genet. (1993) [Pubmed]
  2. Sequence homology shared by neurofibromatosis type-1 gene and IRA-1 and IRA-2 negative regulators of the RAS cyclic AMP pathway. Buchberg, A.M., Cleveland, L.S., Jenkins, N.A., Copeland, N.G. Nature (1990) [Pubmed]
  3. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Basu, T.N., Gutmann, D.H., Fletcher, J.A., Glover, T.W., Collins, F.S., Downward, J. Nature (1992) [Pubmed]
  4. Inactivation of TGFbeta signaling in neural crest stem cells leads to multiple defects reminiscent of DiGeorge syndrome. Wurdak, H., Ittner, L.M., Lang, K.S., Leveen, P., Suter, U., Fischer, J.A., Karlsson, S., Born, W., Sommer, L. Genes Dev. (2005) [Pubmed]
  5. Temporally distinct requirements for endothelin receptor B in the generation and migration of gut neural crest stem cells. Kruger, G.M., Mosher, J.T., Tsai, Y.H., Yeager, K.J., Iwashita, T., Gariepy, C.E., Morrison, S.J. Neuron (2003) [Pubmed]
  6. Role of the neurotrophic factors BDNF and NGF in the commitment of pluripotent neural crest cells. Sieber-Blum, M. Neuron (1991) [Pubmed]
  7. Analysis of hindbrain neural crest migration in the long-tailed monkey (Macaca fascicularis). Peterson, P.E., Blankenship, T.N., Wilson, D.B., Hendrickx, A.G. Anat. Embryol. (1996) [Pubmed]
  8. Evaluating the empirical support for the role of testosterone in the Geschwind-Behan-Galaburda model of cerebral lateralization: commentary on Bryden, McManus, and Bulman-Fleming. Berenbaum, S.A., Denburg, S.D. Brain and cognition. (1995) [Pubmed]
  9. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Gupta, P.B., Kuperwasser, C., Brunet, J.P., Ramaswamy, S., Kuo, W.L., Gray, J.W., Naber, S.P., Weinberg, R.A. Nat. Genet. (2005) [Pubmed]
  10. Nf1 has an essential role in endothelial cells. Gitler, A.D., Zhu, Y., Ismat, F.A., Lu, M.M., Yamauchi, Y., Parada, L.F., Epstein, J.A. Nat. Genet. (2003) [Pubmed]
  11. Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Wakamatsu, N., Yamada, Y., Yamada, K., Ono, T., Nomura, N., Taniguchi, H., Kitoh, H., Mutoh, N., Yamanaka, T., Mushiake, K., Kato, K., Sonta , S., Nagaya, M. Nat. Genet. (2001) [Pubmed]
  12. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Bamforth, S.D., Bragança, J., Eloranta, J.J., Murdoch, J.N., Marques, F.I., Kranc, K.R., Farza, H., Henderson, D.J., Hurst, H.C., Bhattacharya, S. Nat. Genet. (2001) [Pubmed]
  13. Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Guris, D.L., Fantes, J., Tara, D., Druker, B.J., Imamoto, A. Nat. Genet. (2001) [Pubmed]
  14. The homeobox gene S8: mesoderm-specific expression in presomite embryos and in cells cultured in vitro and modulation in differentiating pluripotent cells. de Jong, R., Meijlink, F. Dev. Biol. (1993) [Pubmed]
  15. The effect of tenascin and embryonic basal lamina on the behavior and morphology of neural crest cells in vitro. Halfter, W., Chiquet-Ehrismann, R., Tucker, R.P. Dev. Biol. (1989) [Pubmed]
  16. Embryonic origin of substance P containing neurons in cranial and spinal sensory ganglia of the avian embryo. Fontaine-Perus, J., Chanconie, M., Le Douarin, N.M. Dev. Biol. (1985) [Pubmed]
  17. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. Marasas, W.F., Riley, R.T., Hendricks, K.A., Stevens, V.L., Sadler, T.W., Gelineau-van Waes, J., Missmer, S.A., Cabrera, J., Torres, O., Gelderblom, W.C., Allegood, J., Martínez, C., Maddox, J., Miller, J.D., Starr, L., Sullards, M.C., Roman, A.V., Voss, K.A., Wang, E., Merrill, A.H. J. Nutr. (2004) [Pubmed]
  18. Antigen recognized by monoclonal antibodies to mesencephalic neural crest and to ciliary ganglion neurons is involved in the high affinity choline uptake mechanism in these cells. Barald, K.F. J. Neurosci. Res. (1988) [Pubmed]
  19. Identification of an essential nonneuronal function of neurotrophin 3 in mammalian cardiac development. Donovan, M.J., Hahn, R., Tessarollo, L., Hempstead, B.L. Nat. Genet. (1996) [Pubmed]
  20. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Satoda, M., Zhao, F., Diaz, G.A., Burn, J., Goodship, J., Davidson, H.R., Pierpont, M.E., Gelb, B.D. Nat. Genet. (2000) [Pubmed]
  21. Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Brewster, R., Lee, J., Ruiz i Altaba, A. Nature (1998) [Pubmed]
  22. Molecular control of neural crest formation, migration and differentiation. Christiansen, J.H., Coles, E.G., Wilkinson, D.G. Curr. Opin. Cell Biol. (2000) [Pubmed]
  23. Expression of the trk proto-oncogene is restricted to the sensory cranial and spinal ganglia of neural crest origin in mouse development. Martin-Zanca, D., Barbacid, M., Parada, L.F. Genes Dev. (1990) [Pubmed]
  24. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Morrison, S.J., Perez, S.E., Qiao, Z., Verdi, J.M., Hicks, C., Weinmaster, G., Anderson, D.J. Cell (2000) [Pubmed]
  25. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. Shannon, K.M., O'Connell, P., Martin, G.A., Paderanga, D., Olson, K., Dinndorf, P., McCormick, F. N. Engl. J. Med. (1994) [Pubmed]
  26. Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Marshall, H., Nonchev, S., Sham, M.H., Muchamore, I., Lumsden, A., Krumlauf, R. Nature (1992) [Pubmed]
  27. L-Dopa methyl ester: prolongation of survival of neuroblastoma-bearing mice after treatment. Wick, M.M. Science (1978) [Pubmed]
  28. Retinoic acid embryopathy. Lammer, E.J., Chen, D.T., Hoar, R.M., Agnish, N.D., Benke, P.J., Braun, J.T., Curry, C.J., Fernhoff, P.M., Grix, A.W., Lott, I.T. N. Engl. J. Med. (1985) [Pubmed]
  29. Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Coffman, C.R., Skoglund, P., Harris, W.A., Kintner, C.R. Cell (1993) [Pubmed]
  30. Acetylcholine synthesis by mesencephalic neural crest cells in the process of migration in vivo. Smith, J., Fauquet, M., Ziller, C., Le Douarin, N.M. Nature (1979) [Pubmed]
  31. Inhibition of neural crest cell attachment by integrin antisense oligonucleotides. Lallier, T., Bronner-Fraser, M. Science (1993) [Pubmed]
  32. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Williams, T., Tjian, R. Genes Dev. (1991) [Pubmed]
  33. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Pingault, V., Bondurand, N., Kuhlbrodt, K., Goerich, D.E., Préhu, M.O., Puliti, A., Herbarth, B., Hermans-Borgmeyer, I., Legius, E., Matthijs, G., Amiel, J., Lyonnet, S., Ceccherini, I., Romeo, G., Smith, J.C., Read, A.P., Wegner, M., Goossens, M. Nat. Genet. (1998) [Pubmed]
  34. Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease. Salomon, R., Attié, T., Pelet, A., Bidaud, C., Eng, C., Amiel, J., Sarnacki, S., Goulet, O., Ricour, C., Nihoul-Fékété, C., Munnich, A., Lyonnet, S. Nat. Genet. (1996) [Pubmed]
  35. LDL-receptor-related proteins in Wnt signal transduction. Tamai, K., Semenov, M., Kato, Y., Spokony, R., Liu, C., Katsuyama, Y., Hess, F., Saint-Jeannet, J.P., He, X. Nature (2000) [Pubmed]
  36. Divergent functions of murine Pax3 and Pax7 in limb muscle development. Relaix, F., Rocancourt, D., Mansouri, A., Buckingham, M. Genes Dev. (2004) [Pubmed]
  37. A monoclonal antibody against a laminin-heparan sulfate proteoglycan complex perturbs cranial neural crest migration in vivo. Bronner-Fraser, M., Lallier, T. J. Cell Biol. (1988) [Pubmed]
  38. Cranial and trunk neural crest cells use different mechanisms for attachment to extracellular matrices. Lallier, T., Leblanc, G., Artinger, K.B., Bronner-Fraser, M. Development (1992) [Pubmed]
  39. Head development. Craniofacial genetics makes headway. Richman, J.M. Curr. Biol. (1995) [Pubmed]
  40. SSEA-1 is a specific marker for the spinal sensory neuron lineage in the quail embryo and in neural crest cell cultures. Sieber-Blum, M. Dev. Biol. (1989) [Pubmed]
  41. Epithelia-mesenchyme interaction plays an essential role in transdifferentiation of retinal pigment epithelium of silver mutant quail: localization of FGF and related molecules and aberrant migration pattern of neural crest cells during eye rudiment formation. Araki, M., Takano, T., Uemonsa, T., Nakane, Y., Tsudzuki, M., Kaneko, T. Dev. Biol. (2002) [Pubmed]
WikiGenes - Universities