The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Chlamydia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chlamydia

 

High impact information on Chlamydia

  • Povidone-iodine was more effective against Chlamydia trachomatis than was silver nitrate (P < 0.001) or erythromycin (P = 0.008) [6].
  • Using purified glycosaminoglycans (GAGs) and specific GAG lyases, we demonstrated that a heparan sulfate-like GAG present on the surface of chlamydia organisms is required for attachment to host cells [7].
  • The median time was 7.2 months to a first positive chlamydia test result and 6.3 months to a repeat positive test result among those with repeat visits [8].
  • However, among patients who initially had cultures positive for chlamydia, Chlamydia trachomatis was reisolated within 4 weeks after treatment in none of 10 doxycycline-treated patients, in 11 (52%) of 21 patients treated with 750 mg of ciprofloxacin twice daily, and in six (38%) of 16 patients treated with 1000 mg of ciprofloxacin twice daily [4].
  • We now report that chlamydia can also inhibit both constitutive and IFN-gamma-inducible MHC class I expression in the infected cells [9].
 

Chemical compound and disease context of Chlamydia

  • We previously reported that laboratory reference strains of Chlamydia trachomatis differing in infection organotropism correlated with inactivating mutations in the pathogen's tryptophan synthase (trpBA) genes [10].
  • A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae [11].
  • The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae [12].
  • We undertook studies focused on folate acquisition by Chlamydia trachomatis L2, Chlamydia psittaci 6BC, and C. psittaci francis [13].
  • Treatment of Chlamydia pneumoniae infection with roxithromycin and effect on neointima proliferation after coronary stent placement (ISAR-3): a randomised, double-blind, placebo-controlled trial [14].
 

Biological context of Chlamydia

 

Anatomical context of Chlamydia

 

Gene context of Chlamydia

  • Regulation and role of IFN-gamma in the innate resistance to infection with Chlamydia pneumoniae [25].
  • The interferon (IFN)-gamma-mediated induction of indoleamine 2,3-dioxygenase (IDO) enzyme, which converts tryptophan into N-formylkynurenine, has been implicated in the inhibition of intracellular pathogens, e.g. Toxoplasma gondii and Chlamydia psittaci, and in the antiproliferative effect of IFN-gamma on tumor cells [26].
  • This study focused on determining the cellular immune receptors involved in the early events following infection with the L2 serovar of C. trachomatis.We found that dominant negative MyD88 inhibited interleukin-8 (IL-8) secretion during a productive infection with chlamydia [27].
  • Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen [27].
  • Chlamydia pneumoniae stimulates IFN-gamma synthesis through MyD88-dependent, TLR2- and TLR4-independent induction of IL-18 release [28].
 

Analytical, diagnostic and therapeutic context of Chlamydia

References

  1. Expression of the chlamydial genus-specific lipopolysaccharide epitope in Escherichia coli. Nano, F.E., Caldwell, H.D. Science (1985) [Pubmed]
  2. The genus-specific antigen of Chlamydia: resemblance to the lipopolysaccharide of enteric bacteria. Nurminen, M., Leinonen, M., Saikku, P., Mäkelä, P.H. Science (1983) [Pubmed]
  3. Urinary leukocyte esterase screening test for asymptomatic chlamydial and gonococcal infections in males. Shafer, M.A., Schachter, J., Moscicki, A.B., Weiss, A., Shalwitz, J., Vaughan, E., Millstein, S.G. JAMA (1989) [Pubmed]
  4. Ciprofloxacin compared with doxycycline for nongonococcal urethritis. Ineffectiveness against Chlamydia trachomatis due to relapsing infection. Hooton, T.M., Rogers, M.E., Medina, T.G., Kuwamura, L.E., Ewers, C., Roberts, P.L., Stamm, W.E. JAMA (1990) [Pubmed]
  5. Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. Anttila, T., Saikku, P., Koskela, P., Bloigu, A., Dillner, J., Ikäheimo, I., Jellum, E., Lehtinen, M., Lenner, P., Hakulinen, T., Närvänen, A., Pukkala, E., Thoresen, S., Youngman, L., Paavonen, J. JAMA (2001) [Pubmed]
  6. A controlled trial of povidone-iodine as prophylaxis against ophthalmia neonatorum. Isenberg, S.J., Apt, L., Wood, M. N. Engl. J. Med. (1995) [Pubmed]
  7. Mechanism of C. trachomatis attachment to eukaryotic host cells. Zhang, J.P., Stephens, R.S. Cell (1992) [Pubmed]
  8. Incident Chlamydia trachomatis infections among inner-city adolescent females. Burstein, G.R., Gaydos, C.A., Diener-West, M., Howell, M.R., Zenilman, J.M., Quinn, T.C. JAMA (1998) [Pubmed]
  9. Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon gamma-inducible major histocompatibility complex class I expression in chlamydia-infected cells. Zhong, G., Liu, L., Fan, T., Fan, P., Ji, H. J. Exp. Med. (2000) [Pubmed]
  10. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. Caldwell, H.D., Wood, H., Crane, D., Bailey, R., Jones, R.B., Mabey, D., Maclean, I., Mohammed, Z., Peeling, R., Roshick, C., Schachter, J., Solomon, A.W., Stamm, W.E., Suchland, R.J., Taylor, L., West, S.K., Quinn, T.C., Belland, R.J., McClarty, G. J. Clin. Invest. (2003) [Pubmed]
  11. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Makarova, K.S., Aravind, L., Koonin, E.V. Trends Biochem. Sci. (2000) [Pubmed]
  12. The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae. Hu, H., Pierce, G.N., Zhong, G. J. Clin. Invest. (1999) [Pubmed]
  13. Acquisition and synthesis of folates by obligate intracellular bacteria of the genus Chlamydia. Fan, H., Brunham, R.C., McClarty, G. J. Clin. Invest. (1992) [Pubmed]
  14. Treatment of Chlamydia pneumoniae infection with roxithromycin and effect on neointima proliferation after coronary stent placement (ISAR-3): a randomised, double-blind, placebo-controlled trial. Neumann, F., Kastrati, A., Miethke, T., Pogatsa-Murray, G., Mehilli, J., Valina, C., Jogethaei, N., da Costa, C.P., Wagner, H., Schömig, A. Lancet (2001) [Pubmed]
  15. New insights into a persistent problem -- chlamydial infections. Morrison, R.P. J. Clin. Invest. (2003) [Pubmed]
  16. Structural insights into the antigenicity of myelin oligodendrocyte glycoprotein. Breithaupt, C., Schubart, A., Zander, H., Skerra, A., Huber, R., Linington, C., Jacob, U. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  17. NF-kappa B activation is not required for Chlamydia trachomatis inhibition of host epithelial cell apoptosis. Xiao, Y., Zhong, Y., Su, H., Zhou, Z., Chiao, P., Zhong, G. J. Immunol. (2005) [Pubmed]
  18. Inhibition of lipopolysaccharide biosynthesis and cell growth following inactivation of the kdtA gene in Escherichia coli. Belunis, C.J., Clementz, T., Carty, S.M., Raetz, C.R. J. Biol. Chem. (1995) [Pubmed]
  19. Up-regulation of the JAK/STAT1 signal pathway during Chlamydia trachomatis infection. Lad, S.P., Fukuda, E.Y., Li, J., de la Maza, L.M., Li, E. J. Immunol. (2005) [Pubmed]
  20. Dipstick leukocyte esterase activity in first-catch urine specimens. A useful screening test for detecting sexually transmitted disease in the adolescent male. Sadof, M.D., Woods, E.R., Emans, S.J. JAMA (1987) [Pubmed]
  21. Immunogenicity of a chimeric peptide corresponding to T helper and B cell epitopes of the Chlamydia trachomatis major outer membrane protein. Su, H., Caldwell, H.D. J. Exp. Med. (1992) [Pubmed]
  22. An N-linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells. Kuo, C., Takahashi, N., Swanson, A.F., Ozeki, Y., Hakomori, S. J. Clin. Invest. (1996) [Pubmed]
  23. Differential response of chlamydial and ureaplasma-associated urethritis to sulphafurazole (sulfisoxazole) and aminocyclitols. Bowie, W.R., Floyd, J.F., Miller, Y., Alexander, E.R., Holmes, J., Holmes, K.K. Lancet (1976) [Pubmed]
  24. Chlamydia pneumoniae infection promotes a proliferative phenotype in the vasculature through Egr-1 activation in vitro and in vivo. Rupp, J., Hellwig-Burgel, T., Wobbe, V., Seitzer, U., Brandt, E., Maass, M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  25. Regulation and role of IFN-gamma in the innate resistance to infection with Chlamydia pneumoniae. Rottenberg, M.E., Gigliotti Rothfuchs, A., Gigliotti, D., Ceausu, M., Une, C., Levitsky, V., Wigzell, H. J. Immunol. (2000) [Pubmed]
  26. Regulation of indoleamine 2,3-dioxygenase gene expression in human fibroblasts by interferon-gamma. Upstream control region discriminates between interferon-gamma and interferon-alpha. Dai, W., Gupta, S.L. J. Biol. Chem. (1990) [Pubmed]
  27. Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. O'Connell, C.M., Ionova, I.A., Quayle, A.J., Visintin, A., Ingalls, R.R. J. Biol. Chem. (2006) [Pubmed]
  28. Chlamydia pneumoniae stimulates IFN-gamma synthesis through MyD88-dependent, TLR2- and TLR4-independent induction of IL-18 release. Netea, M.G., Kullberg, B.J., Jacobs, L.E., Verver-Jansen, T.J., van der Ven-Jongekrijg, J., Galama, J.M., Stalenhoef, A.F., Dinarello, C.A., Van der Meer, J.W. J. Immunol. (2004) [Pubmed]
  29. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Beatty, W.L., Byrne, G.I., Morrison, R.P. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  30. Chlamydia trachomatis nucleic acids can be found in the synovium of some asymptomatic subjects. Schumacher, H.R., Arayssi, T., Crane, M., Lee, J., Gerard, H., Hudson, A.P., Klippel, J. Arthritis Rheum. (1999) [Pubmed]
  31. GM-CSF transgene-based adjuvant allows the establishment of protective mucosal immunity following vaccination with inactivated Chlamydia trachomatis. Lu, H., Xing, Z., Brunham, R.C. J. Immunol. (2002) [Pubmed]
  32. Structure of the monophosphoryl lipid A moiety obtained from the lipopolysaccharide of Chlamydia trachomatis. Qureshi, N., Kaltashov, I., Walker, K., Doroshenko, V., Cotter, R.J., Takayama, K., Sievert, T.R., Rice, P.A., Lin, J.S., Golenbock, D.T. J. Biol. Chem. (1997) [Pubmed]
  33. Serologic diagnosis of Lymphogranuloma venereum by counterimmunoelectrophoresis with a Chlamydia trachomatis protein antigen. Caldwell, H.D., Kuo, C.C. J. Immunol. (1977) [Pubmed]
 
WikiGenes - Universities