The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Coxiella

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Coxiella

  • These two polypeptides show homology with Escherichia coli groE and Coxiella burnetii htp heat-shock proteins [1].
  • Monocytic THP-1 cells were infected with Coxiella burnetii, the etiological agent of Q fever, and then treated with IFN-gamma [2].
  • Analysis of the TMD of DjlA and recently identified homologues in Coxiella burnetti and Haemophilus influenzae revealed a striking pattern of conserved glycines (or rarely alanine), with a four-residue spacing [3].
  • The Coxiella dotB, icmS and icmW products restored dot/icm-dependent growth of Legionella mutants in eukaryotic host cells [4].
  • Correlation between serum doxycycline concentrations and serologic evolution in patients with Coxiella burnetii endocarditis [5].
 

High impact information on Coxiella

  • Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection [6].
  • IFN-gamma-induced apoptosis and microbicidal activity in monocytes harboring the intracellular bacterium Coxiella burnetii require membrane TNF and homotypic cell adherence [7].
  • IFN-gamma-mediated control of Coxiella burnetii survival in monocytes: the role of cell apoptosis and TNF [2].
  • Subversion of monocyte functions by coxiella burnetii: impairment of the cross-talk between alphavbeta3 integrin and CR3 [8].
  • The degree of increase in proliferation induced by indomethacin correlated strongly with the amount of PGE2 produced in a 4-hr culture stimulated by Coxiella antigen, but it also correlated with the sensitivity to inhibition of mitogenesis by PGE2 [9].
 

Chemical compound and disease context of Coxiella

  • Endotoxicosis induced by Coxiella burnetii lipopolysaccharide stimulates a ribosomal protein S6 kinase: some properties of the partially purified enzyme [10].
  • Vaccines prepared from Formalin-killed whole cells of Coxiella burnetii (Ohio strain) or from chloroform-methanol residue (CMR) and extract (CME) of such cells were examined for biological and immunological properties in male C57BL/10ScN endotoxin nonresponder mice [11].
  • BALB/cJ (H-2d) mice were injected intraperitoneally (ip) with cyclophosphamide 2 days after ip inoculation with Coxiella burnetii Nine Mile, phase I [12].
  • Bactericidal effect of doxycycline associated with lysosomotropic agents on Coxiella burnetii in P388D1 cells [13].
  • In vitro susceptibilities of spotted fever group rickettsiae and Coxiella burnetti to clarithromycin [14].
 

Biological context of Coxiella

 

Anatomical context of Coxiella

 

Gene context of Coxiella

  • Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections [25].
  • This study examined the effect of nitric oxide produced by inducible nitric oxide synthase (iNOS) up-regulated in response to cytokine stimulation, or by a synthetic nitric oxide donor, on replication of obligately intracellular Coxiella burnetii in murine L-929 cells [26].
  • Because Coxiella burnetii infection depends on host response, we measured tumor necrosis factor (TNF), interleukin (IL)-6, IL-12, and IL-10 in patients with different clinical presentations of acute Q fever [27].
  • Characterization of the Coxiella burnetti sucB gene encoding an immunogenic dihydrolipoamide succinyltransferase [28].
  • Coxiella burnetii infection increases transferrin receptors on J774A. 1 cells [24].
 

Analytical, diagnostic and therapeutic context of Coxiella

References

  1. Chlamydial disease pathogenesis. The 57-kD chlamydial hypersensitivity antigen is a stress response protein. Morrison, R.P., Belland, R.J., Lyng, K., Caldwell, H.D. J. Exp. Med. (1989) [Pubmed]
  2. IFN-gamma-mediated control of Coxiella burnetii survival in monocytes: the role of cell apoptosis and TNF. Dellacasagrande, J., Capo, C., Raoult, D., Mege, J.L. J. Immunol. (1999) [Pubmed]
  3. A novel DnaJ-like protein in Escherichia coli inserts into the cytoplasmic membrane with a type III topology. Clarke, D.J., Jacq, A., Holland, I.B. Mol. Microbiol. (1996) [Pubmed]
  4. Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Zamboni, D.S., McGrath, S., Rabinovitch, M., Roy, C.R. Mol. Microbiol. (2003) [Pubmed]
  5. Correlation between serum doxycycline concentrations and serologic evolution in patients with Coxiella burnetii endocarditis. Rolain, J.M., Mallet, M.N., Raoult, D. J. Infect. Dis. (2003) [Pubmed]
  6. Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. Zamboni, D.S., Campos, M.A., Torrecilhas, A.C., Kiss, K., Samuel, J.E., Golenbock, D.T., Lauw, F.N., Roy, C.R., Almeida, I.C., Gazzinelli, R.T. J. Biol. Chem. (2004) [Pubmed]
  7. IFN-gamma-induced apoptosis and microbicidal activity in monocytes harboring the intracellular bacterium Coxiella burnetii require membrane TNF and homotypic cell adherence. Dellacasagrande, J., Ghigo, E., Raoult, D., Capo, C., Mege, J.L. J. Immunol. (2002) [Pubmed]
  8. Subversion of monocyte functions by coxiella burnetii: impairment of the cross-talk between alphavbeta3 integrin and CR3. Capo, C., Lindberg, F.P., Meconi, S., Zaffran, Y., Tardei, G., Brown, E.J., Raoult, D., Mege, J.L. J. Immunol. (1999) [Pubmed]
  9. Cellular immunity in Q fever: modulation of responsiveness by a suppressor T cell-monocyte circuit. Koster, F.T., Williams, J.C., Goodwin, J.S. J. Immunol. (1985) [Pubmed]
  10. Endotoxicosis induced by Coxiella burnetii lipopolysaccharide stimulates a ribosomal protein S6 kinase: some properties of the partially purified enzyme. Picking, W.D., Hackstadt, T., Paretsky, D. Infect. Immun. (1989) [Pubmed]
  11. Biological and immunological properties of Coxiella burnetii vaccines in C57BL/10ScN endotoxin-nonresponder mice. Williams, J.C., Cantrell, J.L. Infect. Immun. (1982) [Pubmed]
  12. Valvular endocarditis occurs as a part of a disseminated Coxiella burnetii infection in immunocompromised BALB/cJ (H-2d) mice infected with the nine mile isolate of C. burnetii. Atzpodien, E., Baumgärtner, W., Artelt, A., Thiele, D. J. Infect. Dis. (1994) [Pubmed]
  13. Bactericidal effect of doxycycline associated with lysosomotropic agents on Coxiella burnetii in P388D1 cells. Raoult, D., Drancourt, M., Vestris, G. Antimicrob. Agents Chemother. (1990) [Pubmed]
  14. In vitro susceptibilities of spotted fever group rickettsiae and Coxiella burnetti to clarithromycin. Maurin, M., Raoult, D. Antimicrob. Agents Chemother. (1993) [Pubmed]
  15. Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Moos, A., Hackstadt, T. Infect. Immun. (1987) [Pubmed]
  16. Antigenic variation in the phase I lipopolysaccharide of Coxiella burnetii isolates. Hackstadt, T. Infect. Immun. (1986) [Pubmed]
  17. Ribosomal protein phosphorylation induced during Q fever or by lipopolysaccharide: in vitro translation is stimulated by infected liver ribosomes. Hickey, M.J., Gonzales, F.R., Paretsky, D. Infect. Immun. (1985) [Pubmed]
  18. Synthesis in Escherichia coli of two smaller enzymically active analogues of Coxiella burnetii macrophage infectivity potentiator (CbMip) protein utilizing a single open reading frame from the cbmip gene. Mo, Y.Y., Seshu, J., Wang, D., Mallavia, L.P. Biochem. J. (1998) [Pubmed]
  19. Cloning and characterization of an autonomous replication sequence from Coxiella burnetii. Suhan, M., Chen, S.Y., Thompson, H.A., Hoover, T.A., Hill, A., Williams, J.C. J. Bacteriol. (1994) [Pubmed]
  20. Acid phosphatase activity in Coxiella burnetii: a possible virulence factor. Baca, O.G., Roman, M.J., Glew, R.H., Christner, R.F., Buhler, J.E., Aragon, A.S. Infect. Immun. (1993) [Pubmed]
  21. Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages. Zamboni, D.S., Rabinovitch, M. Infect. Immun. (2003) [Pubmed]
  22. Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Berón, W., Gutierrez, M.G., Rabinovitch, M., Colombo, M.I. Infect. Immun. (2002) [Pubmed]
  23. Interferon-gamma inhibits growth of Coxiella burnetii in mouse fibroblasts. Turco, J., Thompson, H.A., Winkler, H.H. Infect. Immun. (1984) [Pubmed]
  24. Coxiella burnetii infection increases transferrin receptors on J774A. 1 cells. Howe, D., Mallavia, L.P. Infect. Immun. (1999) [Pubmed]
  25. Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections. Brennan, R.E., Russell, K., Zhang, G., Samuel, J.E. Infect. Immun. (2004) [Pubmed]
  26. Nitric oxide inhibits Coxiella burnetii replication and parasitophorous vacuole maturation. Howe, D., Barrows, L.F., Lindstrom, N.M., Heinzen, R.A. Infect. Immun. (2002) [Pubmed]
  27. Dysregulation of cytokines in acute Q fever: role of interleukin-10 and tumor necrosis factor in chronic evolution of Q fever. Honstettre, A., Imbert, G., Ghigo, E., Gouriet, F., Capo, C., Raoult, D., Mege, J.L. J. Infect. Dis. (2003) [Pubmed]
  28. Characterization of the Coxiella burnetti sucB gene encoding an immunogenic dihydrolipoamide succinyltransferase. Nguyen, S.V., To, H., Yamaguchi, T., Fukushi, H., Hirai, K. Microbiol. Immunol. (1999) [Pubmed]
  29. Isolation and characterization of a plasmid from phase I Coxiella burnetii. Samuel, J.E., Frazier, M.E., Kahn, M.L., Thomashow, L.S., Mallavia, L.P. Infect. Immun. (1983) [Pubmed]
  30. Identification of a 71-kilodalton surface-associated Hsp70 homologue in Coxiella burnetii. Macellaro, A., Tujulin, E., Hjalmarsson, K., Norlander, L. Infect. Immun. (1998) [Pubmed]
  31. Evaluation of a competitive enzyme immunoassay for detection of Coxiella burnetii antibody in animal sera. Soliman, A.K., Botros, B.A., Watts, D.M. J. Clin. Microbiol. (1992) [Pubmed]
  32. Molecular cloning of a Coxiella burnetii gene encoding a macrophage infectivity potentiator (Mip) analogue. Mo, Y.Y., Cianciotto, N.P., Mallavia, L.P. Microbiology (Reading, Engl.) (1995) [Pubmed]
  33. The detection of Coxiella burnetii from ovine genital swabs, milk and fecal samples by the use of a single touchdown polymerase chain reaction. Berri, M., Laroucau, K., Rodolakis, A. Vet. Microbiol. (2000) [Pubmed]
 
WikiGenes - Universities