The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Hearing Loss, High-Frequency

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hearing Loss, High-Frequency

 

High impact information on Hearing Loss, High-Frequency

 

Chemical compound and disease context of Hearing Loss, High-Frequency

 

Biological context of Hearing Loss, High-Frequency

 

Anatomical context of Hearing Loss, High-Frequency

 

Gene context of Hearing Loss, High-Frequency

  • We show that mice heterozygous for a presumed null allele of Cdh23 ( Cdh23(v)) have low- and high-frequency hearing loss at 5-6 weeks of age, the high-frequency component of which worsens with increasing age [17].
  • Human KCNQ4 mutations known as DFNA2 cause non-syndromic, autosomal-dominant, progressive high-frequency hearing loss in which the cellular and molecular basis is unclear [18].
  • The present study reports linkage to DFNA12 in a new family with autosomal dominant high frequency hearing loss progressing from mild to moderate severity [19].
  • Connexin 31 (Cx31) mutations cause an autosomal dominant form of high-frequency hearing loss [20].
  • The presence of masking release in these old mice, a first generation hybrid strain with near-normal high-frequency hearing in ABR measures, agrees with reports that the masking release resulting from a similar manipulation in aged human listeners with minimal high-frequency hearing loss is the equal of that obtained in the young listener [21].
 

Analytical, diagnostic and therapeutic context of Hearing Loss, High-Frequency

  • In order to assess the relative importance of various signal processing algorithms and distortions on hearing-aid preference, male and female speech was manipulated in a number of ways and subsequently presented to normal-hearing and hearing-impaired subjects (the latter having a mild sensorineural high-frequency hearing loss) [22].

References

  1. In vitro and animal studies of sodium thiosulfate as a potential chemoprotectant against carboplatin-induced ototoxicity. Neuwelt, E.A., Brummett, R.E., Remsen, L.G., Kroll, R.A., Pagel, M.A., McCormick, C.I., Guitjens, S., Muldoon, L.L. Cancer Res. (1996) [Pubmed]
  2. Cis-platinum (CDDP) plus etoposide (VP-16-213) and treatment of disseminated neuroblastoma. Helson, L. Anticancer Res. (1986) [Pubmed]
  3. Erythromycin associated hearing loss in a patient with prior cis-platinum induced ototoxicity. Wallach, P.M., Love, S.R., Fiorica, J.V., Hoffman, M.S., Flannery, M.T. The Journal of the Florida Medical Association. (1992) [Pubmed]
  4. alpha-Tocopherol protective effects on gentamicin ototoxicity: an experimental study. Fetoni, A.R., Sergi, B., Ferraresi, A., Paludetti, G., Troiani, D. International journal of audiology. (2004) [Pubmed]
  5. Neuromagnetic indicators of auditory cortical reorganization of tinnitus. Weisz, N., Wienbruch, C., Dohrmann, K., Elbert, T. Brain (2005) [Pubmed]
  6. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Xiao, S., Yu, C., Chou, X., Yuan, W., Wang, Y., Bu, L., Fu, G., Qian, M., Yang, J., Shi, Y., Hu, L., Han, B., Wang, Z., Huang, W., Liu, J., Chen, Z., Zhao, G., Kong, X. Nat. Genet. (2001) [Pubmed]
  7. Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations. Schimmenti, L.A., Cunliffe, H.E., McNoe, L.A., Ward, T.A., French, M.C., Shim, H.H., Zhang, Y.H., Proesmans, W., Leys, A., Byerly, K.A., Braddock, S.R., Masuno, M., Imaizumi, K., Devriendt, K., Eccles, M.R. Am. J. Hum. Genet. (1997) [Pubmed]
  8. Predicting cisplatin ototoxicity in children: the influence of age and the cumulative dose. Li, Y., Womer, R.B., Silber, J.H. Eur. J. Cancer (2004) [Pubmed]
  9. Is DFNA5 a susceptibility gene for age-related hearing impairment? Van Laer, L., DeStefano, A.L., Myers, R.H., Flothmann, K., Thys, S., Fransen, E., Gates, G.A., Van Camp, G., Baldwin, C.T. Eur. J. Hum. Genet. (2002) [Pubmed]
  10. High frequency hearing loss correlated with mutations in the GJB2 gene. Wilcox, S.A., Saunders, K., Osborn, A.H., Arnold, A., Wunderlich, J., Kelly, T., Collins, V., Wilcox, L.J., McKinlay Gardner, R.J., Kamarinos, M., Cone-Wesson, B., Williamson, R., Dahl, H.H. Hum. Genet. (2000) [Pubmed]
  11. Anatomical correlates of functional recovery in the avian inner ear following aminoglycoside ototoxicity. Girod, D.A., Tucci, D.L., Rubel, E.W. Laryngoscope (1991) [Pubmed]
  12. The effects of occupational exposure to styrene on high-frequency hearing thresholds. Muijser, H., Hoogendijk, E.M., Hooisma, J. Toxicology (1988) [Pubmed]
  13. Psychophysical tuning curves and auditory thresholds after hair cell damage in the chinchilla. Ryan, A., Dallos, P., McGee, T. The Journal of the Acoustical Society of America. (1979) [Pubmed]
  14. Ototoxicity of cis-diamminedichloroplatinum. Vodvárka, P., Foukalová, J., Mrázek, J., Philippová, J. Neoplasma (1985) [Pubmed]
  15. Protective effects of a neurotrophic ACTH(4-9) analog on cisplatin ototoxicity in relation to the cisplatin dose: an electrocochleographic study in albino guinea pigs. Stengs, C.H., Klis, S.F., Huizing, E.H., Smoorenburg, G.F. Hear. Res. (1998) [Pubmed]
  16. Optic nerve dysplasia and renal insufficiency in a family with a novel PAX2 mutation, Arg115X: further ophthalmologic delineation of the renal-coloboma syndrome. Schimmenti, L.A., Manligas, G.S., Sieving, P.A. Ophthalmic Genet. (2003) [Pubmed]
  17. Progressive hearing loss and increased susceptibility to noise-induced hearing loss in mice carrying a Cdh23 but not a Myo7a mutation. Holme, R.H., Steel, K.P. J. Assoc. Res. Otolaryngol. (2004) [Pubmed]
  18. Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss. Beisel, K.W., Rocha-Sanchez, S.M., Morris, K.A., Nie, L., Feng, F., Kachar, B., Yamoah, E.N., Fritzsch, B. J. Neurosci. (2005) [Pubmed]
  19. Mutation in the zonadhesin-like domain of alpha-tectorin associated with autosomal dominant non-syndromic hearing loss. Alloisio, N., Morlé, L., Bozon, M., Godet, J., Verhoeven, K., Van Camp, G., Plauchu, H., Muller, P., Collet, L., Lina-Granade, G. Eur. J. Hum. Genet. (1999) [Pubmed]
  20. Expression of connexin 31 in the developing mouse cochlea. Xia, A.P., Ikeda, K., Katori, Y., Oshima, T., Kikuchi, T., Takasaka, T. Neuroreport (2000) [Pubmed]
  21. The effect of spatial separation of signal and noise on masking in the free field as a function of signal frequency and age in the mouse. Ison, J.R., Agrawal, P. The Journal of the Acoustical Society of America. (1998) [Pubmed]
  22. Preference judgments of artificial processed and hearing-aid transduced speech. Versfeld, N.J., Festen, J.M., Houtgast, T. The Journal of the Acoustical Society of America. (1999) [Pubmed]
 
WikiGenes - Universities