The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Somatosensory Cortex

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Somatosensory Cortex

 

Psychiatry related information on Somatosensory Cortex

 

High impact information on Somatosensory Cortex

 

Biological context of Somatosensory Cortex

 

Anatomical context of Somatosensory Cortex

  • Deep layer pyramidal neurons of CHL1-minus mice were shifted to lower laminar positions in the visual and somatosensory cortex and developed misoriented, often inverted apical dendrites [21].
  • We propose that pathway-specific differences in short-term enhancement are due to variations in the frequency dependence of NMDA currents; different capacities for short-term enhancement may explain why repetitive stimulation more readily induces LTP in the somatosensory cortex than in the motor cortex [22].
  • In the central nervous system, GPI-1046 promoted protection and/or sprouting of serotonin-containing nerve fibers in somatosensory cortex following parachloroamphetamine treatment [23].
  • Despite the behavioral recovery of the ACh-depleted rats, 2-DG uptake in response to whisker stimulation continued to be reduced in the somatosensory cortex ipsilateral to the basal forebrain lesion [24].
  • Anterograde and retrograde tracing experiments were used to correlate patterns of differential distribution of CO activity and of parvalbumin and calbindin cells with the terminations of spinothalamic tract fibers and with the types of cells projecting differentially to superficial and deeper layers of primary somatosensory cortex (SI) [25].
 

Associations of Somatosensory Cortex with chemical compounds

  • In contrast, experiments in which the somatosensory cortex was depleted of acetylcholine and the animal received a similar amputation led not to patterns of expanded metabolic activity, but rather to reductions in the evoked metabolic distribution [26].
  • The studies presented here, using the 2-deoxyglucose technique, demonstrate that the unilateral removal of a digit in cats, followed by stimulation of an adjacent digit, produces a pattern of metabolic activity in the somatosensory cortex that is dramatically expanded when compared with the opposite (normal) hemisphere [26].
  • Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex [27].
  • APP and Abeta overexpression do not diminish the intensity of neural activation, as reflected by the increase in somatosensory cortex glucose usage [28].
  • A sample of 84 neurons in lamina VIa of rat somatosensory cortex (S1) was juxtacellularly labeled with biocytin, and the axons of the neurons were traced [29].
 

Gene context of Somatosensory Cortex

 

Analytical, diagnostic and therapeutic context of Somatosensory Cortex

References

  1. Sensorimotor retuning [corrected] in complex regional pain syndrome parallels pain reduction. Pleger, B., Tegenthoff, M., Ragert, P., Förster, A.F., Dinse, H.R., Schwenkreis, P., Nicolas, V., Maier, C. Ann. Neurol. (2005) [Pubmed]
  2. Prolonged transient ischemia results in impaired CBF recovery and secondary glutamate accumulation in cats. Taguchi, J., Graf, R., Rosner, G., Heiss, W.D. J. Cereb. Blood Flow Metab. (1996) [Pubmed]
  3. Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. Kazama, K., Wang, G., Frys, K., Anrather, J., Iadecola, C. Am. J. Physiol. Heart Circ. Physiol. (2003) [Pubmed]
  4. Alpha 1-adrenoceptor blockade increases behavioral deficits in traumatic brain injury. Dunn-Meynell, A.A., Yarlagadda, Y., Levin, B.E. J. Neurotrauma (1997) [Pubmed]
  5. Regionally selective stimulation of mitogen activated protein (MAP) kinase tyrosine phosphorylation after generalized seizures in the rat brain. Gass, P., Kiessling, M., Bading, H. Neurosci. Lett. (1993) [Pubmed]
  6. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Cases, O., Vitalis, T., Seif, I., De Maeyer, E., Sotelo, C., Gaspar, P. Neuron (1996) [Pubmed]
  7. Metabolic mapping of functional activity in rat brain and pituitary after water deprivation. Duncan, G.E., Oglesby, S.A., Greenwood, R.S., Meeker, R.B., Hayward, J.N., Stumpf, W.E. Neuroendocrinology (1989) [Pubmed]
  8. Functional preservation of benzodiazepine receptors of the primary somatosensory cortex in Creutzfeldt-Jakob disease: a pharmacologic-evoked potential study. Aguglia, U., Oliveri, R.L., Gambardella, A., Talerico, G., Zappia, M., De Sarro, G.B., Quattrone, A. Clinical neuropharmacology. (1996) [Pubmed]
  9. Effect of prenatal exposure to ethanol on the ultrastructure of layer V of mature rat somatosensory cortex. al-Rabiai, S., Miller, M.W. J. Neurocytol. (1989) [Pubmed]
  10. Tactile discrimination learning in the monkey: the effects of unilateral or bilateral removals of the second somatosensory cortex (area SII). Garcha, H.S., Ettlinger, G. Cortex; a journal devoted to the study of the nervous system and behavior. (1980) [Pubmed]
  11. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Iwasato, T., Datwani, A., Wolf, A.M., Nishiyama, H., Taguchi, Y., Tonegawa, S., Knöpfel, T., Erzurumlu, R.S., Itohara, S. Nature (2000) [Pubmed]
  12. RAPID and opposite effects of BDNF and NGF on the functional organization of the adult cortex in vivo. Prakash, N., Cohen-Cory, S., Frostig, R.D. Nature (1996) [Pubmed]
  13. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Cases, O., Seif, I., Grimsby, J., Gaspar, P., Chen, K., Pournin, S., Müller, U., Aguet, M., Babinet, C., Shih, J.C. Science (1995) [Pubmed]
  14. Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Celio, M.R. Science (1986) [Pubmed]
  15. New evidence for neurotransmitter influences on brain development. Levitt, P., Harvey, J.A., Friedman, E., Simansky, K., Murphy, E.H. Trends Neurosci. (1997) [Pubmed]
  16. Regulation of alpha7 nicotinic acetylcholine receptors in the developing rat somatosensory cortex by thalamocortical afferents. Broide, R.S., Robertson, R.T., Leslie, F.M. J. Neurosci. (1996) [Pubmed]
  17. Upregulation of BDNF mRNA expression in the barrel cortex of adult mice after sensory stimulation. Rocamora, N., Welker, E., Pascual, M., Soriano, E. J. Neurosci. (1996) [Pubmed]
  18. Timing and spatial distribution of somatosensory responses recorded in the upper bank of the sylvian fissure (SII area) in humans. Frot, M., Mauguière, F. Cereb. Cortex (1999) [Pubmed]
  19. Recovery of evoked potentials, metabolic activity and behavior in a mouse model of somatosensory cortex lesion: role of the neural cell adhesion molecule (NCAM). Troncoso, E., Muller, D., Korodi, K., Steimer, T., Welker, E., Kiss, J.Z. Cereb. Cortex (2004) [Pubmed]
  20. Tactile sensory input regulates basal and apomorphine-induced immediate-early gene expression in rat barrel cortex. Steiner, H., Gerfen, C.R. J. Comp. Neurol. (1994) [Pubmed]
  21. Close homolog of L1 modulates area-specific neuronal positioning and dendrite orientation in the cerebral cortex. Demyanenko, G.P., Schachner, M., Anton, E., Schmid, R., Feng, G., Sanes, J., Maness, P.F. Neuron (2004) [Pubmed]
  22. Short-term synaptic enhancement and long-term potentiation in neocortex. Castro-Alamancos, M.A., Connors, B.W. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  23. Neurotrophic immunophilin ligands stimulate structural and functional recovery in neurodegenerative animal models. Steiner, J.P., Hamilton, G.S., Ross, D.T., Valentine, H.L., Guo, H., Connolly, M.A., Liang, S., Ramsey, C., Li, J.H., Huang, W., Howorth, P., Soni, R., Fuller, M., Sauer, H., Nowotnik, A.C., Suzdak, P.D. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  24. The impact of basal forebrain lesions on the ability of rats to perform a sensory discrimination task involving barrel cortex. Jacobs, S.E., Juliano, S.L. J. Neurosci. (1995) [Pubmed]
  25. Calbindin and parvalbumin cells in monkey VPL thalamic nucleus: distribution, laminar cortical projections, and relations to spinothalamic terminations. Rausell, E., Bae, C.S., Viñuela, A., Huntley, G.W., Jones, E.G. J. Neurosci. (1992) [Pubmed]
  26. Cholinergic depletion prevents expansion of topographic maps in somatosensory cortex. Juliano, S.L., Ma, W., Eslin, D. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  27. Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex. Fox, K., Schlaggar, B.L., Glazewski, S., O'Leary, D.D. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  28. Abeta 1-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Niwa, K., Younkin, L., Ebeling, C., Turner, S.K., Westaway, D., Younkin, S., Ashe, K.H., Carlson, G.A., Iadecola, C. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  29. Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. Zhang, Z.W., Deschênes, M. J. Neurosci. (1997) [Pubmed]
  30. Choreography of early thalamocortical development. Molnár, Z., Higashi, S., López-Bendito, G. Cereb. Cortex (2003) [Pubmed]
  31. Activity-dependent expression of Egr1 mRNA in somatosensory cortex of developing rats. Patra, R.C., Blue, M.E., Johnston, M.V., Bressler, J., Wilson, M.A. J. Neurosci. Res. (2004) [Pubmed]
  32. Morphological organization of somatosensory cortex in Otx1(-/-) mice. Cipelletti, B., Avanzini, G., Vitellaro-Zuccarello, L., Franceschetti, S., Sancini, G., Lavazza, T., Acampora, D., Simeone, A., Spreafico, R., Frassoni, C. Neuroscience (2002) [Pubmed]
  33. TrkB signaling regulates the developmental maturation of the somatosensory cortex. Lush, M.E., Ma, L., Parada, L.F. Int. J. Dev. Neurosci. (2005) [Pubmed]
  34. Interactions between TrkB signaling and serotonin excess in the developing murine somatosensory cortex: a role in tangential and radial organization of thalamocortical axons. Vitalis, T., Cases, O., Gillies, K., Hanoun, N., Hamon, M., Seif, I., Gaspar, P., Kind, P., Price, D.J. J. Neurosci. (2002) [Pubmed]
  35. Metabolic alterations in rat somatosensory cortex following unilateral vibrissal removal. Dietrich, W.D., Ginsberg, M.D., Busto, R., Smith, D.W. J. Neurosci. (1985) [Pubmed]
  36. Spatial-temporal distribution of whisker-evoked activity in rat somatosensory cortex and the coding of stimulus location. Petersen, R.S., Diamond, M.E. J. Neurosci. (2000) [Pubmed]
  37. "Gating" effects of simultaneous peripheral electrical stimulations on human secondary somatosensory cortex: a whole-head MEG study. Torquati, K., Pizzella, V., Della Penna, S., Franciotti, R., Babiloni, C., Romani, G.L., Rossini, P.M. Neuroimage (2003) [Pubmed]
  38. Interaction of tactile input in the human primary and secondary somatosensory cortex--a magnetoencephalographic study. Hoechstetter, K., Rupp, A., Stancák, A., Meinck, H.M., Stippich, C., Berg, P., Scherg, M. Neuroimage (2001) [Pubmed]
  39. Human task-specific somatosensory activation. Ginsberg, M.D., Yoshii, F., Vibulsresth, S., Chang, J.Y., Duara, R., Barker, W.W., Boothe, T.E. Neurology (1987) [Pubmed]
 
WikiGenes - Universities