The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Penicillium

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Penicillium

  • These enzymes are phospholipase C from Bacillus cereus (structure at 1.5-A resolution) (43) and P1 nuclease from Penicillium citrinum (structure at 2.8-A resolution) (74) [1].
  • A heme d prosthetic group with the configuration of a cis-hydroxychlorin gamma-spirolactone has been found in the crystal structures of Penicillium vitale catalase and Escherichia coli catalase hydroperoxidase II (HPII) [2].
  • A 34 kb fragment of the Nocardia lactamdurans DNA carrying the cluster of early cephamycin biosynthetic genes was cloned in lambda EMBL3 by hybridization with probes internal to the pcbAB and pcbC genes of Penicillium chrysogenum and Streptomyces griseus [3].
  • The multifunctional 6-methylsalicylic acid synthase gene from Penicillium patulum was engineered for regulated expression in Streptomyces coelicolor [4].
  • The catalytic mechanisms of alpha-L-arabinofuranosidases from A. niger, A. aculeatus, Aspergillus awamori, Humicola insolens, Penicillium capsulatum and Bacillus subtilis were investigated using both 1H-NMR and high performance anion exchange chromatography to follow glycosyl transfer reactions to methanol [5].
 

High impact information on Penicillium

 

Chemical compound and disease context of Penicillium

 

Biological context of Penicillium

 

Anatomical context of Penicillium

 

Associations of Penicillium with chemical compounds

  • 5-O-beta-D-Galactofuranosyl-containing exocellular glycopeptide of Penicillium charlesii. Incorporation of mannose from GPD-D-mannose into glycopeptide [26].
  • The cellular localization of the origin of alpha-aminoadipate used in penicillin biosynthesis and the first enzymic step in Penicillium chrysogenum involved, delta-(alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS), has been studied [27].
  • Nitrate reductase from Penicillium chrysogenum. Purification and kinetic mechanism [28].
  • Sulfate-activating enzymes of Penicillium chrysogenum. The ATP sulfurylase.adenosine 5'-phosphosulfate complex does not serve as a substrate for adenosine 5'-phosphosulfate kinase [29].
  • The properties of Penicillium chrysogenum adenosine 5'-phosphosulfate (APS) kinase mutated at Ser-107 were examined [30].
 

Gene context of Penicillium

 

Analytical, diagnostic and therapeutic context of Penicillium

References

  1. Structure and mechanism of alkaline phosphatase. Coleman, J.E. Annual review of biophysics and biomolecular structure. (1992) [Pubmed]
  2. Structure of the heme d of Penicillium vitale and Escherichia coli catalases. Murshudov, G.N., Grebenko, A.I., Barynin, V., Dauter, Z., Wilson, K.S., Vainshtein, B.K., Melik-Adamyan, W., Bravo, J., Ferrán, J.M., Ferrer, J.C., Switala, J., Loewen, P.C., Fita, I. J. Biol. Chem. (1996) [Pubmed]
  3. The cephamycin biosynthetic genes pcbAB, encoding a large multidomain peptide synthetase, and pcbC of Nocardia lactamdurans are clustered together in an organization different from the same genes in Acremonium chrysogenum and Penicillium chrysogenum. Coque, J.J., Martín, J.F., Calzada, J.G., Liras, P. Mol. Microbiol. (1991) [Pubmed]
  4. Expression of a functional fungal polyketide synthase in the bacterium Streptomyces coelicolor A3(2). Bedford, D.J., Schweizer, E., Hopwood, D.A., Khosla, C. J. Bacteriol. (1995) [Pubmed]
  5. Stereochemical course of hydrolysis catalyzed by arabinofuranosyl hydrolases. Pitson, S.M., Voragen, A.G., Beldman, G. FEBS Lett. (1996) [Pubmed]
  6. Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Velasco, J., Luis Adrio, J., Angel Moreno, M., Díez, B., Soler, G., Barredo, J.L. Nat. Biotechnol. (2000) [Pubmed]
  7. Allosteric inhibition via R-state destabilization in ATP sulfurylase from Penicillium chrysogenum. MacRae, I.J., Segel, I.H., Fisher, A.J. Nat. Struct. Biol. (2002) [Pubmed]
  8. The NADPH binding site on beef liver catalase. Fita, I., Rossmann, M.G. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  9. Chinese hamster cell mutant resistant to ML236B (Compactin) is defective in endocytosis of low-density lipo-protein. Masuda, A., Akiyama, S., Kuwano, M. Mol. Cell. Biol. (1982) [Pubmed]
  10. Nonpathogenic, environmental fungi induce activation and degranulation of human eosinophils. Inoue, Y., Matsuwaki, Y., Shin, S.H., Ponikau, J.U., Kita, H. J. Immunol. (2005) [Pubmed]
  11. Structural and kinetic properties of nonglycosylated recombinant Penicillium amagasakiense glucose oxidase expressed in Escherichia coli. Witt, S., Singh, M., Kalisz, H.M. Appl. Environ. Microbiol. (1998) [Pubmed]
  12. Overexpression in Escherichia coli of soluble aristolochene synthase from Penicillium roqueforti. Cane, D.E., Wu, Z., Proctor, R.H., Hohn, T.M. Arch. Biochem. Biophys. (1993) [Pubmed]
  13. Secalonic acid D alters the nature of and inhibits the binding of the transcription factors to the phorbol 12-O-tetradecanoate-13 acetate-response element in the developing murine secondary palate. Balasubramanian, G., Hanumegowda, U., Reddy, C.S. Toxicol. Appl. Pharmacol. (2000) [Pubmed]
  14. Factors affecting patulin production by Penicillium expansum. McCallum, J.L., Tsao, R., Zhou, T. J. Food Prot. (2002) [Pubmed]
  15. Toxicity of Penicillium citrinum AUA-532 contaminated corn and citrinin in broiler chicks. Roberts, W.T., Mora, E.C. Poult. Sci. (1978) [Pubmed]
  16. The Saccharomyces cerevisiae PLB1 gene encodes a protein required for lysophospholipase and phospholipase B activity. Lee, K.S., Patton, J.L., Fido, M., Hines, L.K., Kohlwein, S.D., Paltauf, F., Henry, S.A., Levin, D.E. J. Biol. Chem. (1994) [Pubmed]
  17. Adenosine triphosphate sulfurylase from penicillium chrysogenum. Steady state kinetics of the forward and reverse reactions. Farley, J.R., Cryns, D.F., Yang, Y.H., Segel, I.H. J. Biol. Chem. (1976) [Pubmed]
  18. Molecular cloning, sequencing, and heterologous expression of the vaoA gene from Penicillium simplicissimum CBS 170.90 encoding vanillyl-alcohol oxidase. Benen, J.A., Sánchez-Torres, P., Wagemaker, M.J., Fraaije, M.W., van Berkel, W.J., Visser, J. J. Biol. Chem. (1998) [Pubmed]
  19. Control of morphogenesis and actin localization by the Penicillium marneffei RAC homolog. Boyce, K.J., Hynes, M.J., Andrianopoulos, A. J. Cell. Sci. (2003) [Pubmed]
  20. Genomic sequence of mitochondrial genes coding for ATPase subunit 6 and small subunit ribosomal RNA from Penicillium chrysogenum: a key for molecular systematics on fungi. Sheen, J., Kho, Y.H., Bae, K.S. Nucleic Acids Res. (1993) [Pubmed]
  21. Inhibition of intramacrophage growth of Penicillium marneffei by 4-aminoquinolines. Taramelli, D., Tognazioli, C., Ravagnani, F., Leopardi, O., Giannulis, G., Boelaert, J.R. Antimicrob. Agents Chemother. (2001) [Pubmed]
  22. Recognition of fibronectin by Penicillium marneffei conidia via a sialic acid-dependent process and its relationship to the interaction between conidia and laminin. Hamilton, A.J., Jeavons, L., Youngchim, S., Vanittanakom, N. Infect. Immun. (1999) [Pubmed]
  23. Detection of cell wall mannoprotein Mp1p in culture supernatants of Penicillium marneffei and in sera of penicilliosis patients. Cao, L., Chan, K.M., Chen, D., Vanittanakom, N., Lee, C., Chan, C.M., Sirisanthana, T., Tsang, D.N., Yuen, K.Y. J. Clin. Microbiol. (1999) [Pubmed]
  24. Modelling of the protonophoric uncoupling by phenoxyacetic acid of the plasma membrane potential of Penicillium chrysogenum. Henriksen, C.M., Nielsen, J., Villadsen, J. Biotechnol. Bioeng. (1998) [Pubmed]
  25. Solving the structure of the bubble protein using the anomalous sulfur signal from single-crystal in-house Cu Kalpha diffraction data only. Olsen, J.G., Flensburg, C., Olsen, O., Bricogne, G., Henriksen, A. Acta Crystallogr. D Biol. Crystallogr. (2004) [Pubmed]
  26. 5-O-beta-D-Galactofuranosyl-containing exocellular glycopeptide of Penicillium charlesii. Incorporation of mannose from GPD-D-mannose into glycopeptide. Gander, J.E., Drewes, L.R., Fang, F., Lui, A. J. Biol. Chem. (1977) [Pubmed]
  27. Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum. The amino acid precursors are derived from the vacuole. Lendenfeld, T., Ghali, D., Wolschek, M., Kubicek-Pranz, E.M., Kubicek, C.P. J. Biol. Chem. (1993) [Pubmed]
  28. Nitrate reductase from Penicillium chrysogenum. Purification and kinetic mechanism. Renosto, F., Ornitz, D.M., Peterson, D., Segel, I.H. J. Biol. Chem. (1981) [Pubmed]
  29. Sulfate-activating enzymes of Penicillium chrysogenum. The ATP sulfurylase.adenosine 5'-phosphosulfate complex does not serve as a substrate for adenosine 5'-phosphosulfate kinase. Renosto, F., Martin, R.L., Segel, I.H. J. Biol. Chem. (1989) [Pubmed]
  30. Adenosine 5'-phosphosulfate kinase from Penicillium chrysogenum. site-directed mutagenesis at putative phosphoryl-accepting and ATP P-loop residues. MacRae, I.J., Rose, A.B., Segel, I.H. J. Biol. Chem. (1998) [Pubmed]
  31. Cloning and sequencing of ATP sulfurylase from Penicillium chrysogenum. Identification of a likely allosteric domain. Foster, B.A., Thomas, S.M., Mahr, J.A., Renosto, F., Patel, H.C., Segel, I.H. J. Biol. Chem. (1994) [Pubmed]
  32. TupA, the Penicillium marneffei Tup1p homologue, represses both yeast and spore development. Todd, R.B., Greenhalgh, J.R., Hynes, M.J., Andrianopoulos, A. Mol. Microbiol. (2003) [Pubmed]
  33. The CDC42 homolog of the dimorphic fungus Penicillium marneffei is required for correct cell polarization during growth but not development. Boyce, K.J., Hynes, M.J., Andrianopoulos, A. J. Bacteriol. (2001) [Pubmed]
  34. Conversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the lys7 gene encoding saccharopine reductase. Naranjo, L., Martin de Valmaseda, E., Bañuelos, O., Lopez, P., Riaño, J., Casqueiro, J., Martin, J.F. J. Bacteriol. (2001) [Pubmed]
  35. The ICL1 gene of Pichia pastoris, transcriptional regulation and use of its promoter. Menendez, J., Valdes, I., Cabrera, N. Yeast (2003) [Pubmed]
  36. Purification to homogeneity and characterization of acyl coenzyme A:6-aminopenicillanic acid acyltransferase of Penicillium chrysogenum. Alvarez, E., Cantoral, J.M., Barredo, J.L., Díez, B., Martín, J.F. Antimicrob. Agents Chemother. (1987) [Pubmed]
  37. Molecular and immunological characterization and IgE epitope mapping of Pen n 18, a major allergen of Penicillium notatum. Yu, C.J., Chen, Y.M., Su, S.N., Forouhar, F., Lee, S.H., Chow, L.P. Biochem. J. (2002) [Pubmed]
  38. Thin-layer chromatographic bioassay of iridoid and secoiridoid glucosides with a fungitoxic aglucone moiety using beta-glucosidase and the fungus Penicillium expansum as a test organism. van der Sluis, W.G., van der Nat, J.M., Labadie, R.P. J. Chromatogr. (1983) [Pubmed]
  39. DNA damage by mycotoxins. Wang, J.S., Groopman, J.D. Mutat. Res. (1999) [Pubmed]
 
WikiGenes - Universities