The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Neuroprotective gene therapy for Huntington's disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF.

Huntington's disease ( HD) is an autosomal dominant genetic disease with devastating clinical effects on cognitive, psychological, and motor functions. These clinical symptoms primarily relate to the progressive loss of medium-spiny GABA-ergic neurons of the striatum. There is no known treatment to date. Several neurotrophic factors have, however, demonstrated the capacity to protect striatal neurons in various experimental models of HD. This includes the ciliary neurotrophic factor (CNTF), the substance examined in this protocol. An ex vivo gene therapy approach based on encapsulated genetically modified BHK cells will be used for the continuous and long-term intracerebral delivery of CNTF. A device, containing up to 106 human CNTF-producing BHK cells surrounded by a semipermeable membrane, will be implanted into the right lateral ventricle of 6 patients. Capsules releasing 0.15-0.5 microg CNTF/day will be used. In this phase I study, the principal goal will be the evaluation of the safety and tolerability of the procedure. As a secondary goal, HD symptoms will be analyzed using a large battery of neuropsychological, motor, neurological, and neurophysiological tests and the striatal pathology monitored using MRI and PET-scan imaging. It is expected that the gene therapy approach described in this protocol will mitigate the side effects associated with the peripheral administration of recombinant hCNTF and allow a well-tolerated, continuous intracerebroventricular delivery of the neuroprotective factor.[1]

References

  1. Neuroprotective gene therapy for Huntington's disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF. Bachoud-Lévi, A.C., Déglon, N., Nguyen, J.P., Bloch, J., Bourdet, C., Winkel, L., Rémy, P., Goddard, M., Lefaucheur, J.P., Brugières, P., Baudic, S., Cesaro, P., Peschanski, M., Aebischer, P. Hum. Gene Ther. (2000) [Pubmed]
 
WikiGenes - Universities