The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Latrophilin, neurexin, and their signaling-deficient mutants facilitate alpha -latrotoxin insertion into membranes but are not involved in pore formation.

Pure alpha-latrotoxin is very inefficient at forming channels/pores in artificial lipid bilayers or in the plasma membrane of non-secretory cells. However, the toxin induces pores efficiently in COS-7 cells transfected with the heptahelical receptor latrophilin or the monotopic receptor neurexin. Signaling-deficient (truncated) mutants of latrophilin and latrophilin-neurexin hybrids also facilitate pore induction, which correlates with toxin binding irrespective of receptor structure. This rules out the involvement of signaling in pore formation. With any receptor, the alpha-latrotoxin pores are permeable to Ca(2+) and small molecules including fluorescein isothiocyanate and norepinephrine. Bound alpha-latrotoxin remains on the cell surface without penetrating completely into the cytosol. Higher temperatures facilitate insertion of the toxin into the plasma membrane, where it co-localizes with latrophilin (under all conditions) and with neurexin (in the presence of Ca(2+)). Interestingly, on subsequent removal of Ca(2+), alpha-latrotoxin dissociates from neurexin but remains in the membrane and continues to form pores. These receptor-independent pores are inhibited by anti-alpha-latrotoxin antibodies. Our results indicate that (i) alpha-latrotoxin is a pore-forming toxin, (ii) receptors that bind alpha-latrotoxin facilitate its insertion into the membrane, (iii) the receptors are not physically involved in the pore structure, (iv) alpha-latrotoxin pores may be independent of the receptors, and (v) pore formation does not require alpha-latrotoxin interaction with other neuronal proteins.[1]

References

  1. Latrophilin, neurexin, and their signaling-deficient mutants facilitate alpha -latrotoxin insertion into membranes but are not involved in pore formation. Volynski, K.E., Meunier, F.A., Lelianova, V.G., Dudina, E.E., Volkova, T.M., Rahman, M.A., Manser, C., Grishin, E.V., Dolly, J.O., Ashley, R.H., Ushkaryov, Y.A. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities