The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A new h allele detected in Europe has a missense mutationin alpha(1,2)-fucosyltransferase motif II.

BACKGROUND: The FUT1 gene encodes an alpha(1,2)-fucosyltransferase (H transferase), which determines the blood group H. Nonfunctional alleles of this gene, called h alleles and carrying loss-of-function mutations, are observed in the exceedingly rare Bombay phenotype. Twenty-three distinct h alleles have been characterized at the molecular level in various populations. The FUT2 (SE) gene is highly homologous to FUT1 (H:). STUDY DESIGN AND METHODS: The FUT1 gene of an Austrian proband with the Bombay phenotype was characterized by nucleotide sequencing of the full-length coding sequence. A PCR method using sequence-specific primers for FUT2 genotyping in whites was developed. The plasma alpha(1,2)-fucosyltransferase activity was determined. The distribution of the mutations underlying 24 h alleles and 7 se alleles was analyzed. RESULTS: The proband carried a new h allele. Two nucleotide changes, G785A and C786A, in codon 262 of the FUT1 gene resulted in the replacement of serine by lysine. No alpha(1,2)-fucosyltransferase activity was detected in the proband's plasma. The proband was homozygous for the seG428A allele. Six of 17 missense mutations in nonfunctional h and se alleles occurred in highly conserved fucosyltransferase motifs. No loss-of-function mutation was observed in the aminoterminal section encompassing the transmembraneous helix. CONCLUSION: The missense mutation S262K in the FUT1 gene caused the loss of H transferase activity. The analysis of the distribution of mutations in nonfunctional FUT1 and FUT2 genes can point to functionally important domains in the H transferase.[1]

References

  1. A new h allele detected in Europe has a missense mutationin alpha(1,2)-fucosyltransferase motif II. Wagner, T., Vadon, M., Staudacher, E., Schmarda, A., Gassner, C., Helmberg, W., Lanzer, G., Flegel, W.A., Wagner, F.F. Transfusion (2001) [Pubmed]
 
WikiGenes - Universities