The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Transgenic mice with an expanded CAG repeat controlled by the human AR promoter show polyglutamine nuclear inclusions and neuronal dysfunction without neuronal cell death.

We generated transgenic mice that expressed a highly expanded 239 polyglutamine (polyQ) repeat under the control of the human androgen receptor promoter. These transgenic mice developed progressive neurological phenotypes of muscular weakness and ataxia, small body size and short life-span. PolyQ nuclear inclusions (NIs) were remarkable and widespread but found in selective regions of the central nervous system (CNS) such as the spinal cord, cerebrum and cerebellum as well as in selective peripheral visceral organs. This distribution pattern resembled that of spinal and bulbar muscular atrophy somewhat, but was more widespread. In neuronal tissues, NIs were present in astrocytes as well as neurons. Cytoplasmic and axonal inclusions were not observed. In the CNS regions with abundant NIs, neuronal populations were well-preserved, and neither neuronal cell death, reactive astrogliosis nor microglial invasions were detected. These findings suggest that polyQ alone can induce the neuronal dysfunction that precedes gross neuronal degeneration and provides a clue for investigating molecular mechanisms that underly the pathway to neuronal dysfunction from polyQ expansion.[1]

References

  1. Transgenic mice with an expanded CAG repeat controlled by the human AR promoter show polyglutamine nuclear inclusions and neuronal dysfunction without neuronal cell death. Adachi, H., Kume, A., Li, M., Nakagomi, Y., Niwa, H., Do, J., Sang, C., Kobayashi, Y., Doyu, M., Sobue, G. Hum. Mol. Genet. (2001) [Pubmed]
 
WikiGenes - Universities