The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Chimerism of the transplanted heart.

BACKGROUND: Cases in which a male patient receives a heart from a female donor provide an unusual opportunity to test whether primitive cells translocate from the recipient to the graft and whether cells with the phenotypic characteristics of those of the recipient ultimately reside in the donor heart. The Y chromosome can be used to detect migrated undifferentiated cells expressing stem-cell antigens and to discriminate between primitive cells derived from the recipient and those derived from the donor. METHODS: We examined samples from the atria of the recipient and the atria and ventricles of the graft by fluorescence in situ hybridization to determine whether Y chromosomes were present in eight hearts from female donors implanted into male patients. Primitive cells bearing Y chromosomes that expressed c-kit, MDR1, and Sca-1 were also investigated. RESULTS: Myocytes, coronary arterioles, and capillaries that had a Y chromosome made up 7 to 10 percent of those in the donor hearts and were highly proliferative. As compared with the ventricles of control hearts, the ventricles of the transplanted hearts had markedly increased numbers of cells that were positive for c-kit, MDR1, or Sca-1. The number of primitive cells was higher in the atria of the hosts and the atria of the donor hearts than in the ventricles of the donor hearts, and 12 to 16 percent of these cells contained a Y chromosome. Undifferentiated cells were negative for markers of bone marrow origin. Progenitor cells expressing MEF2, GATA-4, and nestin (which identify the cells as myocytes) and Flk1 (which identifies the cells as endothelial cells) were identified. CONCLUSIONS: Our results show a high level of cardiac chimerism caused by the migration of primitive cells from the recipient to the grafted heart. Putative stem cells and progenitor cells were identified in control myocardium and in increased numbers in transplanted hearts.[1]

References

  1. Chimerism of the transplanted heart. Quaini, F., Urbanek, K., Beltrami, A.P., Finato, N., Beltrami, C.A., Nadal-Ginard, B., Kajstura, J., Leri, A., Anversa, P. N. Engl. J. Med. (2002) [Pubmed]
 
WikiGenes - Universities