The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pathogenesis of murine experimental allergic rhinitis: a study of local and systemic consequences of IL-5 deficiency.

Recent studies have demonstrated an important role for IL-5-dependent bone marrow eosinophil progenitors in allergic inflammation. However, studies using anti-IL-5 mAbs in human asthmatics have failed to suppress lower airway hyperresponsiveness despite suppression of eosinophilia; therefore, it is critical to examine the role of IL-5 and bone marrow responses in the pathogenesis of allergic airway disease. To do this, we studied the effects of IL-5 deficiency (IL-5(-/-)) on bone marrow function as well as clinical and local events, using an established experimental murine model of allergic rhinitis. Age-matched IL-5(+/+) and IL-5(-/-) BALB/c mice were sensitized to OVA followed by 2 wk of daily OVA intranasal challenge. IL-5(-/-) OVA-sensitized mice had significantly higher nasal mucosal CD4(+) cells and basophilic cell counts as well as nasal symptoms and histamine hyperresponsiveness than the nonsensitized group; however, there was no eosinophilia in either nasal mucosa or bone marrow; significantly lower numbers of eosinophil/basophil CFU and maturing CFU eosinophils in the presence of recombinant mouse IL-5 in vitro; and significantly lower expression of IL-5Ralpha on bone marrow CD34(+)CD45(+) progenitor cells in IL-5(-/-) mice. These findings suggest that IL-5 is required for normal bone marrow eosinophilopoiesis, in response to specific Ag sensitization, during the development of experimental allergic rhinitis. However, the results also suggest that suppression of the IL-5-eosinophil pathway in this model of allergic rhinitis may not completely suppress clinical symptoms or nasal histamine hyperresponsiveness, because of the existence of other cytokine-progenitor pathways that may induce and maintain the presence of other inflammatory cell populations.[1]

References

  1. Pathogenesis of murine experimental allergic rhinitis: a study of local and systemic consequences of IL-5 deficiency. Saito, H., Matsumoto, K., Denburg, A.E., Crawford, L., Ellis, R., Inman, M.D., Sehmi, R., Takatsu, K., Matthaei, K.I., Denburg, J.A. J. Immunol. (2002) [Pubmed]
 
WikiGenes - Universities