The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Disruption of a novel MFS transporter gene, DIRC2, by a familial renal cell carcinoma-associated t(2;3)(q35;q21).

Previously, we described a family with a significantly increased predisposition for renal cell cancer co-segregating with a t(2;3)(q35;q21) chromosomal translocation. Several primary tumors of the clear cell type from different family members were analyzed at a molecular level. Loss of the derivative chromosome 3 was consistently found. In addition, different somatic Von Hippel Lindau ( VHL) gene mutations were observed in most of the tumors analyzed, even within the same patient. Based on these results a multistep tumorigenesis model was proposed in which (non-disjunctional) loss of the derivative chromosome 3 represents an early event and somatic mutation of the VHL gene represents a late event related to tumor progression. More recently, however, we noted that these two anomalies were absent in at least one early-stage tumor sample that we tested. Similar results were obtained in another family with renal cell cancer and t(3;6)(q12;q15), thus suggesting that another genetic event may precede these two oncogenetic steps. We speculate that deregulation of a gene(s) located at or near the translocation breakpoint may act as such. In order to identify such genes, a detailed physical map encompassing the 3q21 breakpoint region was constructed. Through a subsequent positional cloning effort we found that this breakpoint targets a hitherto unidentified gene, designated DIRC2 (disrupted in renal cancer 2). Computer predictions of the putative DIRC2 protein showed significant homology to different members of the major facilitator superfamily (MFS) of transporters. Based on additional DIRC2 expression and mutation analyses, we propose that the observed gene disruption may result in haplo-insufficiency and, through this mechanism, in the onset of tumor growth.[1]

References

  1. Disruption of a novel MFS transporter gene, DIRC2, by a familial renal cell carcinoma-associated t(2;3)(q35;q21). Bodmer, D., Eleveld, M., Kater-Baats, E., Janssen, I., Janssen, B., Weterman, M., Schoenmakers, E., Nickerson, M., Linehan, M., Zbar, B., van Kessel, A.G. Hum. Mol. Genet. (2002) [Pubmed]
 
WikiGenes - Universities