The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Oxidation of quercetin by salivary components. Quercetin-dependent reduction of salivary nitrite under acidic conditions producing nitric oxide.

Under acidic conditions, nitrite is protonated to nitrous acid (pK(a) = 3.2-3.4) that can be transformed into nitric oxide by self-decomposition and reduction. When sodium nitrite was mixed with quercetin at pH 1-2, quercetin was oxidized producing nitric oxide. In addition to quercetin, kaempferol and quercetin 4'-glucoside were also oxidized by nitrous acid, but oxidation of apigenin, luteolin, and rutin was slow compared to oxidation of the above flavonols. These results suggested that flavonols, which have a free hydroxyl group at carbon position 3, can readily reduce nitrous acid to nitric oxide. When the pH of saliva was decreased to 1-2, formation of nitric oxide was observed. The nitric oxide formation was enhanced by quercetin, and during this process quercetin was oxidized. These results indicate that there is a possibility of reactions between phenolics and nitrous acid derived from salivary nitrite in the stomach.[1]

References

 
WikiGenes - Universities