The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer's disease.

Neurogenesis occurs in the adult mammalian brain and may play roles in learning and memory processes and recovery from injury, suggesting that abnormalities in neural progenitor cells (NPC) might contribute to the pathogenesis of disorders of learning and memory in humans. The objectives of this study were to determine whether NPC proliferation, survival and neuronal differentiation are impaired in a transgenic mouse model of Alzheimer's disease (AD), and to determine the effects of the pathogenic form of amyloid beta-peptide (Abeta) on the survival and neuronal differentiation of cultured NPC. The proliferation and survival of NPC in the dentate gyrus of the hippocampus was reduced in mice transgenic for a mutated form of amyloid precursor protein that causes early onset familial AD. Abeta impaired the proliferation and neuronal differentiation of cultured human and rodent NPC, and promoted apoptosis of neuron-restricted NPC by a mechanism involving dysregulation of cellular calcium homeostasis and the activation of calpains and caspases. Adverse effects of Abeta on NPC may contribute to the depletion of neurons and cognitive impairment in AD.[1]

References

  1. Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer's disease. Haughey, N.J., Nath, A., Chan, S.L., Borchard, A.C., Rao, M.S., Mattson, M.P. J. Neurochem. (2002) [Pubmed]
 
WikiGenes - Universities