The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity.

Translation initiation factor eIF5B/IF2 is a GTPase that promotes ribosomal subunit joining. We show that eIF5B mutations in Switch I, an element conserved in all GTP binding domains, impair GTP hydrolysis and general translation but not eIF5B subunit joining function. Intragenic suppressors of the Switch I mutation restore general translation, but not eIF5B GTPase activity. These suppressor mutations reduce the ribosome affinity of eIF5B and increase AUG skipping/leaky scanning. The uncoupling of translation and eIF5B GTPase activity suggests a regulatory rather than mechanical function for eIF5B GTP hydrolysis in translation initiation. The translational defect suggests eIF5B stabilizes Met-tRNA(i)(Met) binding and that GTP hydrolysis by eIF5B is a checkpoint monitoring 80S ribosome assembly in the final step of translation initiation.[1]

References

  1. Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Shin, B.S., Maag, D., Roll-Mecak, A., Arefin, M.S., Burley, S.K., Lorsch, J.R., Dever, T.E. Cell (2002) [Pubmed]
 
WikiGenes - Universities