The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ameliorative effects of histamine on 7-chlorokynurenic acid-induced spatial memory deficits in rats.

RATIONALE: Histamine plays an important role in modulating acquisition and retention in learning and memory process in experimental animals. OBJECTIVES: We examined the effects of polyamine and histamine on the N-methyl- d-aspartate (NMDA) receptor glycine site antagonist 7-chlorokynurenic acid-induced spatial memory deficits in radial maze performance in rats. METHOD: Effects of histamine (0.5 or 1 nmol/site intracerebroventricularly), spermidine (1 nmol/site, intracerebroventricularly) and spermine (1 nmol/site, intracerebroventricularly) on spatial memory deficit in 9-week-old-male Wistar rats were observed. Both reference and working memory errors occurred in radial maze performance in rats, following intracerebroventricular injection of 7-chlorokynurenic acid (10 nmol/site). RESULTS: Spermidine (1 nmol/site, intracerebroventricularly) or spermine (1 nmol/site, intracerebroventricularly) antagonized 7-chlorokynurenic acid-induced deficits on working memory but not on reference memory errors. Intracerebroventricular histamine (0.5 or 1 nmol/site) or thioperamide (100 nmol/site) also ameliorated 7-chlorokynurenic acid-induced working memory deficits. To determine whether the effects of histamine involve histamine receptors, the effects of some methylhistamines were examined. The effects of R-alpha-methylhistamine on radial maze performance were mimicked by histamine. N(alpha)-methylhistamine had no effect on 7-chlorokynurenic acid-induced memory deficits, whereas 1-methylhistamine, but not 3-methylhistamine reversed 7-chlorokynurenic acid-induced working memory deficits. CONCLUSION: These results suggest that the amelioration of 7-chlorokynurenic acid-induced working memory deficits by histamine may involve a direct action of histamine at the polyamine sites on NMDA receptors.[1]

References

 
WikiGenes - Universities