The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

PCP4 is highly expressed in ectoderm and particularly in neuroectoderm derivatives during mouse embryogenesis.

PCP4 (PEP-19) belongs to a family of proteins involved in calcium transduction signals and binds calmodulin via an IQ motif, in a calcium independent manner. PCP4 gene maps to murine chromosome 16 and in human to chromosome 21. Murine PCP4 expression in the brain has been detected by Northern blot analysis to be mainly post-natal and in the adult to have a neuronal pattern. To investigate if it might have a role earlier in development, we analyzed its expression during mouse embryogenesis by in situ hybridization from E7.5 post-coitum (p.c.) to E17.5 p.c., and in P0 brain. Early, at E7.5, a high expression is restricted to the extra embryonic ectoderm. Embryonic expression starts at E9. 5. At E10.5, PCP4 shows a strong signal in the post-mitotic cells of the diencephalon, the metencephalon and the myelencephalon and in the dorsal and cranial ganglia. The floor plate is also densely labelled. At E17.5, PCP4 is expressed in the central nervous system, in the myenteric plexus, and in other ectoderm derivatives, for instance the lens, the hairy cells of the cochlea, the enamel organ and the hair follicles. Thus, during embryogenesis PCP4 is mainly expressed in ectoderm and neuroectoderm comprising neural crest derived cells.[1]

References

  1. PCP4 is highly expressed in ectoderm and particularly in neuroectoderm derivatives during mouse embryogenesis. Thomas, S., Thiery, E., Aflalo, R., Vayssettes, C., Verney, C., Berthuy, I., Créau, N. Gene Expr. Patterns (2003) [Pubmed]
 
WikiGenes - Universities