The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression.

Human papillomavirus type 16 (HPV-16), a DNA tumor virus, has a causal role in cervical cancer, and the viral oncoproteins E6 and E7 contribute to oncogenesis in multiple ways. E6 increases telomerase activity in keratinocytes through increased transcription of the telomerase catalytic subunit gene (TERT), but the factors involved in this have been elusive. We have found that mutation of the proximal E box in the TERT promoter has an activating effect in luciferase assays. This suggested that a repressive complex might be present at this site. HPV-16 E6 activated the TERT promoter predominantly through the proximal E box, and thus, might be acting on this repressive complex. This site is specific for the Myc/Mad/Max transcription factors as well as USF1 and USF2. Addition of exogenous USF1 or USF2 repressed activation of the TERT promoter by E6, dependent on the proximal E box. Using siRNA against USF1 or USF2 allowed for greater activation of the TERT promoter by E6. Conversely, loss of c-Myc function, through a dominant-negative Myc molecule, reduced activation by E6. Chromatin immunoprecipitations showed that in the presence of E6, there was a reduction in binding of USF1 and USF2 at the TERT promoter proximal E box, and a concomitant increase in c-Myc bound to this site. This shows that a repressive complex containing USF1 and USF2 is present in normal cells with little or no telomerase activity. In E6 keratinocytes, this repressive complex is replaced by c-Myc, which corresponds to higher levels of TERT transcription and consequently, telomerase activity.[1]

References

 
WikiGenes - Universities