The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The OECD program to validate the rat uterotrophic bioassay. Phase 2: dietary phytoestrogen analyses.

Many commercial laboratory diets have detectable levels of isoflavones (e.g., phytoestrogens such as genistein [GN]) that have weak estrogenic activity both in vitro and in vivo. During validation studies of the uterotrophic bioassay, diet samples from 20 participating laboratories were collected and analyzed for three major phytoestrogens: GN, daidzein (DN), and coumestrol (CM). Soy phytoestrogens GN and DN were found at total phytoestrogen levels from 100 to 540 microg/g laboratory diet; a forage phytoestrogen, CM, ranged from nondetectable to 4 microg/g laboratory diet. The phytoestrogen levels were compared with both baseline uterine weights of the control groups and with the relative uterine weight increase of groups administered two weak estrogen agonists: bisphenol A (BPA) and nonylphenol (NP). The comparison uses a working assumption of additivity among the phytoestrogens, despite several significant qualifications to this assumption, to estimate total genistein equivalents (TGE). Some evidence was found that phytoestrogen levels in the diet > 325-350 microg/g TGE could diminish the responsiveness of the uterotrophic bioassay to weak agonists. This was especially true for the case of the intact, immature female version of the uterotrophic bioassay, where higher food consumption relative to body weight leads to higher intakes of dietary phytoestrogens versus ovariectomized adults. This dietary level is sufficient in the immature female to approach a biological lowest observable effect level for GN of 40-50 mg/kg/day. These same data, however, show that low to moderate levels of dietary phytoestrogens do not substantially affect the responsiveness of the assay with weak estrogen receptor agonists such as NP and BPA. Therefore, laboratories conducting the uterotrophic bioassay for either research or regulatory purposes may routinely use diets containing levels of phytoestrogens < 325-350 microg/g TGE without impairing the responsiveness of the bioassay.[1]

References

  1. The OECD program to validate the rat uterotrophic bioassay. Phase 2: dietary phytoestrogen analyses. Owens, W., Ashby, J., Odum, J., Onyon, L. Environ. Health Perspect. (2003) [Pubmed]
 
WikiGenes - Universities