The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis.

Exposure of human ovarian tumor cell lines to cisplatin led to development of cell lines that exhibited increasing degrees of drug resistance, which were closely correlated with increase of the levels of cellular glutathione. Cell lines were obtained that showed 30- to 1000-fold increases in resistance; these cells also had strikingly increased (13- to 50-fold) levels of glutathione as compared with the drug-sensitive cells of origin. These levels of resistance to cisplatin and the cellular glutathione levels are substantially greater than previously reported. Very high cisplatin resistance was associated with enhanced expression of mRNAs for gamma-glutamylcysteine synthetase and gamma-glutamyl transpeptidase; immunoblots showed increase of gamma-glutamylcysteine synthetase but not of glutathione synthetase. Glutathione S-transferase activity was unaffected, as determined with chlorodinitrobenzene as a substrate. These studies suggest the potential value of examining regulation of glutathione synthesis as an indicator of clinical prognosis. The highly resistant cell lines are proving useful for studying the multiple mechanisms by which tumor cells acquire drug- and radiation-resistance.[1]

References

  1. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Godwin, A.K., Meister, A., O'Dwyer, P.J., Huang, C.S., Hamilton, T.C., Anderson, M.E. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
 
WikiGenes - Universities