The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The genetics of FANCC and FANCG in familial pancreatic cancer.

Patients with Fanconi anemia (FA) display a wide variety of defects including bone marrow failure and a high risk of developing cancer. Multiple Fanconi genes exist whose proteins form a complex that along with BRCA1 is important for the translocalization of FANCD2 to nuclear foci. With BRCA2 and RAD51, this complex is thought to have a role in the repair of DNA double strand breaks. The genetic basis of another form of Fanconi anemia--FANCD1, was recently identified as the result of biallelic inactivating mutations of the BRCA2 gene. Since carriers of germline BRCA2 gene mutations have an increased risk of developing pancreatic cancer, the FA pathway has been investigated as a tumor suppressor pathway in pancreatic cancer. Recently van der Heijden et al. identified FANCC and FANCG gene mutations in patients with young-onset pancreatic cancer. Here, we determined the role of germline FA gene mutations in kindred in which several family members had pancreatic cancer. Sequence analysis of 38 individuals with familial pancreatic cancer enrolled in the National Familial Pancreatic Tumor Registry (NFPTR) revealed previously identified polymorphisms within two exons and one intron of FANCC, and in three introns of FANCG. In addition, an unaffected relative from one family contained an exonic polymorphism within the FANCC gene. These and published data suggest the possibility that although germline and somatic mutations in FANCC and FANCG may contribute to the occurrence of pancreatic cancers, the pancreatic cancers that arise do so in an apparent sporadic fashion rather than with a phenotype of familial pancreatic cancer. FANCC and FANCG mutations may have low penetrance for the pancreatic cancer phenotype.[1]

References

  1. The genetics of FANCC and FANCG in familial pancreatic cancer. Rogers, C.D., van der Heijden, M.S., Brune, K., Yeo, C.J., Hruban, R.H., Kern, S.E., Goggins, M. Cancer Biol. Ther. (2004) [Pubmed]
 
WikiGenes - Universities