The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Basic mechanism of three-dimensional collagen fibre transport by fibroblasts.

Collagen remodelling by fibroblasts has a crucial role in organizing tissue structures that are essential to motility during wound repair, development and regulation of cell growth. However, the mechanism of collagen fibre movement in three-dimensional (3D) matrices is not understood. Here, we show that fibroblast lamellipodia extend along held collagen fibres, bind, and retract them in a 'hand-over-hand' cycle, involving alpha2beta1 integrin. Wild-type fibroblasts move collagen fibres three to four times farther per cycle than fibroblasts lacking myosin II-B (myosin II-B(-/-)). Similarly, myosin II-B(-/-) fibroblasts contract 3D collagen gels threefold less than controls. On two-dimensional (2D) substrates, however, rates of collagen bead and cell movement are not affected by loss of myosin II-B. Green fluorescent protein (GFP)-tagged myosin II-B, but not II-A, restores normal function in knockout cells and localizes to cell processes, whereas myosin II-A is more centrally located. Additionally, GFP-myosin II-B moves out to the periphery and back during hand-over-hand fibre movement, whereas on 2D collagen, myosin II-B is more centrally distributed. Thus, we suggest that cyclic myosin II-B assembly and contraction in lamellipodia power 3D fibre movements.[1]

References

  1. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Meshel, A.S., Wei, Q., Adelstein, R.S., Sheetz, M.P. Nat. Cell Biol. (2005) [Pubmed]
 
WikiGenes - Universities