The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Antiviral activity of the marine alga Symphyocladia latiuscula against herpes simplex virus (HSV-1) in vitro and its therapeutic efficacy against HSV-1 infection in mice.

The antiviral activities of extracts from 5 species of marine algae collected at Haeundae (Pusan, Korea), were examined using plaque reduction assays. Although the activity of a methanol (MeOH) extract of Sargassum ringoldianum (Sargassaceae) was the most potent against several types of viruses, it was also cytotoxic. A MeOH extract of Symphyocladia latiuscula (Rhodomelaceae) and its fractions exhibited antiviral activities against acyclovir (ACV) and phosphonoacetic acid (PAA)-resistant (AP(r)) herpes simplex type 1 (HSV-1), thymidine kinase ( TK(-)) deficient HSV-1 and wild type HSV-1 in vitro without cytotoxicity. The major component, 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (TDB) of a CH(2)Cl(2)-soluble fraction was active against wild type HSV-1, as well as AP(r) HSV-1 and TK(-) HSV-1 (IC(50) values of 5.48, 4.81 and 23.3 microg/ml, respectively). The therapeutic effectiveness of the MeOH extract and TDB from S. latiuscula was further examined in BALB/c mice that were cutaneously infected with HSV-1 strain 7401H. Three daily oral administrations of the MeOH extract and TDB significantly delayed the appearance of score 2 skin lesions (local vesicles) and limited the development of further score 6 (mild zosteriform) lesions in infected mice without toxicity compared with controls. In addition, TDB suppressed virus yields in the brain and skin. Therefore TDB should be a promising anti HSV agent.[1]


WikiGenes - Universities