The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Attenuation of oxidative injury after induction of experimental intracerebral hemorrhage in heme oxygenase-2 knockout mice.

OBJECT: Experimental evidence suggests that hemoglobin degradation products contribute to cellular injury after intracerebal hemorrhage (ICH). Hemoglobin breakdown is catalyzed in part by the heme oxygenase (HO) enzymes. In the present study, the authors tested the hypothesis that HO-2 gene deletion is cytoprotective in an experimental ICH model. METHODS: After anesthesia was induced with isoflurane, 3- to 6-month-old HO-2 knockout and wild-type mice were stereotactically injected with 15 microl autologous blood and a group of control mice were injected with an equal volume of sterile saline. Striatal protein and lipid oxidation were quantified 72 hours later using carbonyl and malondialdehyde assays. Cell viability was determined by performing a 3(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. Following blood injection, the investigators found a 3.4-fold increase in protein carbonylation compared with that in the contralateral striatum in wild-type mice; in knockout mice, the investigators found a twofold increase. The mean malondialdehyde concentration in injected striata was increased twofold in wild-type mice at this time, compared with 1.5-fold in knockout mice. Cell viability, as determined by MTT reduction, was reduced in injected striata to 38 +/- 4% of that in the contralateral striata in wild-type mice, compared with 66 +/- 5% in HO-2 knockout mice. Baseline striatal HO-1 protein expression was similar in wild-type and HO-2 knockout mice, but was induced more rapidly in the former after blood injection. CONCLUSIONS: Deletion of HO-2 attenuates oxidative cell injury after whole-blood injection into the mouse striatum. Therapies that specifically target HO-2 may improve outcome after ICH.[1]

References

  1. Attenuation of oxidative injury after induction of experimental intracerebral hemorrhage in heme oxygenase-2 knockout mice. Qu, Y., Chen-Roetling, J., Benvenisti-Zarom, L., Regan, R.F. J. Neurosurg. (2007) [Pubmed]
 
WikiGenes - Universities