The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Protein kinase C theta (PKCtheta)-dependent phosphorylation of PDK1 at Ser504 and Ser532 contributes to palmitate-induced insulin resistance.

Clinical, epidemiological, and biochemical studies have highlighted the role of obesity-induced insulin resistance in various metabolic diseases. However, the underlying molecular mechanisms remain to be established. In the present study, we show that palmitate-induced serine phosphorylation of phosphoinositide-dependent protein kinase-1 (PDK1) negatively regulates insulin signaling. PDK1-mediated Akt phosphorylation at Thr308 in the activation loop is reduced in C2C12 myotubes treated with palmitate or overexpressing protein kinase C theta (PKCtheta), a kinase that has been implicated in hyperlipidemia-induced insulin resistance. Palmitate treatment also inhibited platelet-derived growth factor-stimulated Akt phosphorylation, suggesting that the inhibition could occur at a site independent of IRS1/2. The inhibitory effect of palmitate on PDK1 and Akt was diminished in PKCtheta-deficient mouse embryonic fibroblasts (MEFs) by treating C2C12 myotubes with PKCtheta pseudosubstrates. In vivo labeling studies revealed that PDK1 undergoes palmitate-induced phosphorylation at two novel sites, Ser504 and Ser532. Replacing Ser504/532 with alanine disrupted PKCtheta-catalyzed PDK1 phosphorylation in vitro and palmitate-induced PDK1 phosphorylation in cells. PDK1-deficient MEFs transiently expressing PDK1S504A/S532A but not PDK1S504E/S532D showed increased basal and insulin-stimulated Akt phosphorylation at Thr308 when compared with MEFs expressing wild-type PDK1. Taken together, our results identify PDK1 as a novel target in free fatty acid-induced insulin resistance and PKCtheta as the kinase mediating the negative regulation.[1]

References

  1. Protein kinase C theta (PKCtheta)-dependent phosphorylation of PDK1 at Ser504 and Ser532 contributes to palmitate-induced insulin resistance. Wang, C., Liu, M., Riojas, R.A., Xin, X., Gao, Z., Zeng, R., Wu, J., Dong, L.Q., Liu, F. J. Biol. Chem. (2009) [Pubmed]
 
WikiGenes - Universities