The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A diacylglycerol kinase inhibitor, R 59 022, potentiates superoxide anion production and 46-kDa protein phosphorylation in guinea pig polymorphonuclear leukocytes.

A diacylglycerol (DG) kinase inhibitor, R 59 022, potentiated superoxide anion (O2-) production in guinea pig polymorphonuclear leukocytes (PMNL) induced by N-formyl-methionyl-leucyl-phenylalanine (FMLP). R 59 022 also potentiated O2- production induced by 1-oleoyl-2-acetylglycerol, a permeable DG. However, the production induced by phorbol 12-myristate 13-acetate (PMA), a direct activator for protein kinase C, was not potentiated by R 59 022. R 59 022 by itself had no significant effects on unstimulated O2- production. The potentiation of FMLP-induced O2- production by R 59 022 was correlated closely with increased formation of DG and decreased formation of phosphatidic acid, a product of DG kinase. R 59 022 had no effect on the breakdown of phosphoinositides. Phosphorylation of 46-kDa protein(s) by protein kinase C was also examined in relation to O2- production in PMNL. In coincidence with the increase in O2- production, the phosphorylation was potentiated by R 59 022 in the response to FMLP, but not in the response to PMA. In addition, staurosporine, a protein kinase C inhibitor, inhibited increases in both O2- production and phosphorylation of the 46-kDa protein(s) after PMA stimulation. Similar inhibitory effects of staurosporine were also observed upon stimulation with FMLP, irrespective of the presence of R 59 022. These results indicate that retention of DG as a result of the inhibition of further metabolism induces marked stimulation of O2- production via protein kinase C activation in PMNL. These results also provide further evidence for the close relationship between 46-kDa protein phosphorylation by protein kinase C and stimulation of O2- production in PMNL.[1]

References

 
WikiGenes - Universities