The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Biochemical, structural, and transglutaminase substrate properties of human loricrin, the major epidermal cornified cell envelope protein.

Loricrin is the major protein of the cornified cell envelope of terminally differentiated epidermal keratinocytes which functions as a physical barrier. In order to understand its properties and role in cornified cell envelope, we have expressed human loricrin from a full-length cDNA clone in bacteria and purified it to homogeneity. We have also isolated loricrin from newborn mouse epidermis. By circular dichroism and fluorescence spectroscopy, the in vivo mouse and bacterially expressed human loricrins possess no alpha or beta structure but have some organized structure in solution associated with their multiple tyrosines and can be reversibly denatured by either guanidine hydrochloride or temperature. The transglutaminase (TGase) 1, 2, and 3 enzymes expressed during epidermal differentiation utilized loricrin in vitro as a complete substrate, but the types of cross-linking were different. The TGase 3 reaction favored certain lysines and glutamines by forming mostly intrachain cross-links, whereas TGase 1 formed mostly large oligomeric complexes by interchain cross-links involving different lysines and glutamines. Together, the glutamines and lysines used in vitro are almost identical to those seen in vivo. The data support a hypothesis for the essential and complementary roles of both TGase 1 and TGase 3 in cross- linking of loricrin in vivo. Failure to cross-link loricrin by TGase 1 may explain the phenotype of lamellar ichthyosis, a disease caused by mutations in the TGase 1 gene.[1]

References

  1. Biochemical, structural, and transglutaminase substrate properties of human loricrin, the major epidermal cornified cell envelope protein. Candi, E., Melino, G., Mei, G., Tarcsa, E., Chung, S.I., Marekov, L.N., Steinert, P.M. J. Biol. Chem. (1995) [Pubmed]
 
WikiGenes - Universities