The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sequence, expression and modeled structure of an aspartic proteinase from the human malaria parasite Plasmodium falciparum.

A clone encoding the aspartic proteinase (PFAPD) from Plasmodium falciparum strain HB3 was obtained during the course of a project designed to sequence and identify the protein coding regions of the parasite's genome. The protein encoded by the clone contains a sequence identical to the N-terminal sequence determined for an aspartic proteinase isolated from the digestive vacuole of P. falciparum and demonstrated to participate in the hemoglobin digestive pathway (D. Goldberg, personal communication). The translated polypeptide sequence encompasses a number of features characteristic of aspartic proteinases, having > 30% identity and > 50% similarity overall to human cathepsin D, cathepsin E and renin. A model of the three-dimensional structure of PFAPD was constructed using rule-based procedures. This confirms that the primary sequence may be folded as a single chain into a three dimensional structure closely resembling those of other known aspartic proteinases. It includes a lengthy prosegment, two typical-hydrophobic-hydrophobic-Asp-Thr/Ser-Gly motifs and a tyrosine residue positioned in a beta-hairpin loop. The distribution of hydrophobic residues throughout the active site cleft is indicative of a likely preference for hydrophobic polypeptide substrates. The recombinant form of this enzyme expressed using the pGEX2T vector in Escherichia coli is active in digesting hemoglobin at acidic pH and in hydrolyzing a synthetic peptide corresponding to the putative initial cleavage site in hemoglobin. Activity is inhibited completely by pepstatin, confirming the identity of PFAPD as a member of the aspartic proteinase family. Specific mRNA for PFAPD is expressed in the erythrocytic stages of the life cycle.[1]

References

  1. Sequence, expression and modeled structure of an aspartic proteinase from the human malaria parasite Plasmodium falciparum. Dame, J.B., Reddy, G.R., Yowell, C.A., Dunn, B.M., Kay, J., Berry, C. Mol. Biochem. Parasitol. (1994) [Pubmed]
 
WikiGenes - Universities