The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Toxoplasma gondii alters eicosanoid release by human mononuclear phagocytes: role of leukotrienes in interferon gamma-induced antitoxoplasma activity.

Toxoplasma gondii tachyzoites markedly alter the profile of eicosanoids released by human mononuclear phagocytes. Freshly isolated, 2-h adherent human monocytes release both cyclooxygenase (e.g., thromboxane [TX] B2, prostaglandin [PG] E2) and 5-lipoxygenase (e.g., leukotriene [LT] B4, LTC4) products of arachidonic acid metabolism after stimulation by the calcium ionophore A23187 or ingestion of opsonized zymosan particles or heat-killed T. gondii. However, after incubation with viable T. gondii, normal and chronic granulomatous disease monocytes release only the cyclooxygenase products TXB2 and PGE2 and fail to form LTB4, LTC4, or other 5-lipoxygenase products. Monocytes maintained in culture for 5 d lose this capacity to release TXB2 and PGE2 after incubation with T. gondii. T. gondii significantly inhibit calcium ionophore A23187-induced LTB4 release by monocyte-derived macrophages; heat-killed organisms do not affect this calcium ionophore A23187-induced release of LTB4. T. gondii-induced inhibition of LTB4 release by calcium ionophore A23187-stimulated monocyte-derived macrophage is reversed by interferon (IFN)-gamma treatment of the monolayers. LTB4 induced extensive damage to the cellular membranes and cytoplasmic contents of the organisms as observed by transmission electron microscopy. Exogenous LTB4 (10(-6) M) induced intracellular killing of ingested T. gondii by non-IFN-gamma-treated monocyte-derived macrophages. IFN-gamma- induced antitoxoplasma activity in monocyte-derived macrophages was inhibited by the selective 5-lipoxygenase inhibitor zileuton but not by the cyclooxygenase inhibitor indomethacin. These findings suggest a novel role for 5-lipoxygenase arachidonic acid products in human macrophage IFN-gamma-induced antitoxoplasma activity.[1]

References

 
WikiGenes - Universities