The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Gene amplification in human gliomas.

Gliomas represent the largest group of primary brain tumors in adults. The astrocytic variants are the most common and the adult forms are histologically stratified into three malignancy grades. Of these glioblastoma is the most common and the most malignant; it has also been best studied by molecular genetics and cytogenetics. Double-minute chromosomes, known to represent amplified genes, are found in 50% of glioblastomas. Amplified genes are not detected in the most benign of the astrocytomas. Many genes have been shown to be amplified in more than single cases of gliomas and these include EGFR, CDK4, SAS, MDM2, GLI, PDGFAR, MYC, N MYC, MYCL1, MET, GADD153, and KIT. The most commonly amplified genes in glioblastomas are EGFR (in approximately 40%), CDK4, and SAS (in approximately 15%). The remainder of the genes are amplified at lower frequency. The best mapped amplicon in gliomas involves the 12q13-14 region. The amplicon is of undetermined size, encompasses a number of genes, and may be rearranged. It occurs in 15% of glioblastomas and almost always includes the CDK4 and SAS genes, in about 10% of tumors the MDM2 gene, and at lower frequency GLI, GADD153, and A2MR. All but A2MR are overexpressed if amplified. The amplified EGFR gene is frequently rearranged, resulting in changes in the regions of the transcript that codes for the extracellular domain. The resultant receptor is constitutively activated. These findings provide examples of the impact the use of modern molecular biological techniques has had on our understanding of oncogenic mechanisms in gliomas.[1]

References

  1. Gene amplification in human gliomas. Collins, V.P. Glia (1995) [Pubmed]
 
WikiGenes - Universities