The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Functional cooperation between the non-paralogous genes Hoxa-10 and Hoxd-11 in the developing forelimb and axial skeleton.

The Abdominal B-related Hoxa-10 gene displays similar expression patterns in the differentiating forelimbs and hindlimbs of the mouse, with preferential expression around the humeral and femoral cartilages and more diffuse expression in distal regions. We found that a targeted disruption of Hoxa-10 has almost no effect in the forelimbs, while it affects the proximal hindlimb skeleton. The alterations were located along the dorsolateral side of the femur (labium laterale), with an enlargement and distal shift of the third trochanter, a misshapen lateral knee sesamoid, a supernumerary 'ligament' connecting these structures and an occasional duplication of the femoral trochlea. Some Hoxa-10-/- mutant mice developed severe degenerative alterations of the knee articulation upon ageing. Viable Hoxa-10/Hoxd-11 double mutant mice were produced by genetic intercrosses. The compound mutation resulted in synergistic forelimb phenotypic alterations, consisting of: (i) an exacerbation of Hoxd-11-/- phenotypic traits in the carpal and digital region, e.g. more pronounced truncations of the ulna styloid, pyramidal and pisiform bones and of some metacarpal and phalangeal bones and (ii) marked alterations in a more proximal region which is nearly unaffected in Hoxd-11-/- single mutants; the entire radius and ulna were truncated and thickened, with deformations of the ulna proximal extremity. Thus, functional redundancy can occur even between non-paralogous Abdominal B-related Hox genes. The double Hoxa-10/Hoxd-11 mutation also conferred full penetrance to the sacral and caudal vertebrae transformations which are approximately 50% penetrant in Hoxd-11-/- single mutants, revealing that functional cooperation can also occur between non-paralogous Hox gene products in axial skeleton patterning.[1]

References

  1. Functional cooperation between the non-paralogous genes Hoxa-10 and Hoxd-11 in the developing forelimb and axial skeleton. Favier, B., Rijli, F.M., Fromental-Ramain, C., Fraulob, V., Chambon, P., Dollé, P. Development (1996) [Pubmed]
 
WikiGenes - Universities