The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Upstream stimulatory factor 2 activates the mammalian F1F0 ATP synthase alpha-subunit gene through an initiator element.

The F1F0 ATP synthase is the central enzyme complex of the mitochondrial oxidative phosphorylation system synthesizing ATP from ADP and Pi. Our laboratory has been studying the transcriptional regulation of the nuclear gene that encodes the alpha-subunit of the mammalian mitochondrial ATP synthase complex (ATPA). We have previously identified an initiator element in the core promoter that plays an important role in expression of this gene. In this article, we demonstrate that ectopic expression of the transcription factor, upstream stimulatory factor 2 (USF2), transactivates the ATPA gene through this initiator element. Importantly, cotransfection of a dominant-negative USF2 mutant significantly reduces both the basal activity and the level of activation of the ATPA initiator by coexpressed USF2 demonstrating the role of endogenous USF2 proteins in this activation. We also identify several nucleotides in the ATPA initiator element that are important for both basal activity and USF2-dependent transactivation. We have also previously determined that the binding of the multifunctional regulatory protein, YY1, to this initiator element can positively regulate the ATPA gene. Here, we show that expression of YY1 together with USF2 results in a decreased level of activation of the ATPA initiator relative to expression of USF2 alone, suggesting competition between these two regulatory proteins.[1]

References

 
WikiGenes - Universities