The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Nipam     N-propan-2-ylprop-2-enamide

Synonyms: NIPAM polymer, ACMC-1CBZ4, ANW-41338, HSDB 5868, NSC-11448, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of N-isopropylacrylamide

 

High impact information on N-isopropylacrylamide

  • More specifically, we used differing combinations of N-isopropylacrylamide, which is presently used as an adaptive cell culture substrate, and the more hydrophobic, yet structurally similar, monomer N-tert-butylacrylamide [5].
  • The kinetics of catalysis by the gel in the shrunken state is well described by the Michaelis-Menten formula, indicating that the absorption of the substrate by the hydrophobic environment created by the N-isopropylacrylamide polymer in the shrunken gel is responsible for enhancement of catalytic activity [6].
  • Water-soluble block copolymers were prepared from the nonionic monomer N-isopropylacrylamide (NIPA) and the zwitterionic monomer 3-[N-(3-methacrylamidopropyl)-N,N-dimethyl]ammoniopropane sulfonate (SPP) by sequential free radical polymerization via the RAFT process [7].
  • Five fluorescent monomers having a benzofurazan skeleton were synthesized, and the copolymers of N-isopropylacrylamide (NIPAM) and a small quantity of the fluorescent monomer were obtained to investigate their fluorescence properties [8].
  • Photo-reversible Pb2+-complexation in a purely aqueous environment exhibiting a thermosensitive phase transition at a lower critical solution temperature was achieved using a synthetic copolymer composed of N-isopropyl acrylamide and spiropyran acrylate [9].
 

Biological context of N-isopropylacrylamide

 

Anatomical context of N-isopropylacrylamide

 

Associations of N-isopropylacrylamide with other chemical compounds

 

Gene context of N-isopropylacrylamide

  • METHODS: Random terpolymers of varying MW were synthesized with NIPAAm/BMA/AA of feed mol ratio 85/5/10 [24].
  • To improve the properties of a reversible synthetic extracellular matrix based on a thermally reversible polymer, copolymers of N-isopropylacrylamide and acrylic acid were prepared in benzene with varying contents of acrylic acid (0 to 3%) and the thermal properties were evaluated [25].
  • We conclude that NiPAM-based thermoreversible biomaterials, despite their limited ability to support cell growth, allowed an enhanced expression of the chosen osteogenic marker (ALP) by C2C12 cells in vitro [11].
  • These bio-functionalized interfaces were prepared by electron beam-induced copolymerization of N-isopropylacrylamide (IPAAm) with its carboxyl-derivatized analog, 2-carboxyisopropylacrylamide (CIPAAm), and grafting onto tissue culture polystyrene dishes, followed by immobilization of RGDS and/or INS to CIPAAm carboxyls [26].
  • All these analogues also produced a reduction in the two enzyme activities, except for enolase after N-isopropylacrylamide [2].
 

Analytical, diagnostic and therapeutic context of N-isopropylacrylamide

References

  1. Targeted delivery of arjunglucoside I using surface hydrophilic and hydrophobic nanocarriers to combat experimental leishmaniasis. Tyagi, R., Lala, S., Verma, A.K., Nandy, A.K., Mahato, S.B., Maitra, A., Basu, M.K. Journal of drug targeting. (2005) [Pubmed]
  2. Effect of acrylamide and related compounds on glycolytic enzymes in rat sciatic nerve in vivo. Sakamoto, J., Hashimoto, K. Arch. Toxicol. (1985) [Pubmed]
  3. Immobilization of Arg-Gly-Asp (RGD) sequence in a thermosensitive hydrogel for cell delivery using pheochromocytoma cells (PC12). Park, K.H., Yun, K. J. Biosci. Bioeng. (2004) [Pubmed]
  4. Metal chelate affinity precipitation of RNA and purification of plasmid DNA. Balan, S., Murphy, J., Galaev, I., Kumar, A., Fox, G.E., Mattiasson, B., Willson, R.C. Biotechnol. Lett. (2003) [Pubmed]
  5. Interaction of soft condensed materials with living cells: phenotype/transcriptome correlations for the hydrophobic effect. Allen, L.T., Fox, E.J., Blute, I., Kelly, Z.D., Rochev, Y., Keenan, A.K., Dawson, K.A., Gallagher, W.M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  6. Gel catalysts that switch on and off. Wang, G., Kuroda, K., Enoki, T., Grosberg, A., Masamune, S., Oya, T., Takeoka, Y., Tanaka, T. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  7. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. Arotçaréna, M., Heise, B., Ishaya, S., Laschewsky, A. J. Am. Chem. Soc. (2002) [Pubmed]
  8. Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans. Uchiyama, S., Matsumura, Y., de Silva, A.P., Iwai, K. Anal. Chem. (2003) [Pubmed]
  9. Photo-reversible Pb2+-complexation of thermosensitive poly(N-isopropyl acrylamide-co-spiropyran acrylate) in water. Suzuki, T., Kato, T., Shinozaki, H. Chem. Commun. (Camb.) (2004) [Pubmed]
  10. DNA purification by triple-helix affinity precipitation. Costioli, M.D., Fisch, I., Garret-Flaudy, F., Hilbrig, F., Freitag, R. Biotechnol. Bioeng. (2003) [Pubmed]
  11. RGD-grafted thermoreversible polymers to facilitate attachment of BMP-2 responsive C2C12 cells. Smith, E., Yang, J., McGann, L., Sebald, W., Uludag, H. Biomaterials (2005) [Pubmed]
  12. Steric stabilization of liposomes by pH-responsive N-isopropylacrylamide copolymer. Roux, E., Stomp, R., Giasson, S., Pézolet, M., Moreau, P., Leroux, J.C. Journal of pharmaceutical sciences. (2002) [Pubmed]
  13. In vitro transfection of HeLa cells with temperature sensitive polycationic copolymers. Türk, M., Dinçer, S., Yuluğ, I.G., Pişkin, E. Journal of controlled release : official journal of the Controlled Release Society. (2004) [Pubmed]
  14. Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Kim, S., Healy, K.E. Biomacromolecules (2003) [Pubmed]
  15. Temperature-dependent interaction of thermo-sensitive polymer-modified liposomes with CV1 cells. Kono, K., Nakai, R., Morimoto, K., Takagishi, T. FEBS Lett. (1999) [Pubmed]
  16. Surface-modulated skin layers of thermal responsive hydrogels as on-off switches: II. Drug permeation. Yoshida, R., Sakai, K., Okano, T., Sakurai, Y. Journal of biomaterials science. Polymer edition. (1992) [Pubmed]
  17. Thermoresponsive artificial extracellular matrix: N-isopropylacrylamide-graft-copolymerized gelatin. Morikawa, N., Matsuda, T. Journal of biomaterials science. Polymer edition. (2002) [Pubmed]
  18. Insulin release from islets of Langerhans entrapped in a poly(N-isopropylacrylamide-co-acrylic acid) polymer gel. Vernon, B., Kim, S.W., Bae, Y.H. Journal of biomaterials science. Polymer edition. (1999) [Pubmed]
  19. Temperature and pH sensitive hydrogels: An approach towards smart semen-triggered vaginal microbicidal vehicles. Gupta, K.M., Barnes, S.R., Tangaro, R.A., Roberts, M.C., Owen, D.H., Katz, D.F., Kiser, P.F. Journal of pharmaceutical sciences (2007) [Pubmed]
  20. Preparation and characterization of intelligent core-shell nanoparticles based on poly(D,L-lactide)-g-poly(N-isopropyl acrylamide-co-methacrylic acid). Lo, C.L., Lin, K.M., Hsiue, G.H. Journal of controlled release : official journal of the Controlled Release Society. (2005) [Pubmed]
  21. Drug targeting using thermally responsive polymers and local hyperthermia. Meyer, D.E., Shin, B.C., Kong, G.A., Dewhirst, M.W., Chilkoti, A. Journal of controlled release : official journal of the Controlled Release Society. (2001) [Pubmed]
  22. Thermoresponsive comb-shaped copolymer-Si(100) hybrids for accelerated temperature-dependent cell detachment. Xu, F.J., Zhong, S.P., Yung, L.Y., Tong, Y.W., Kang, E.T., Neoh, K.G. Biomaterials (2006) [Pubmed]
  23. pH and temperature-sensitive N-isopropylacrylamide ampholytic networks incorporating L-lysine. Karbarz, M., Pulka, K., Misicka, A., Stojek, Z. Langmuir : the ACS journal of surfaces and colloids. (2006) [Pubmed]
  24. Polymer molecular weight alters properties of pH-/temperature-sensitive polymeric beads. Ramkissoon-Ganorkar, C., Gutowska, A., Liu, F., Baudys, M., Kim, S.W. Pharm. Res. (1999) [Pubmed]
  25. Thermoreversible copolymer gels for extracellular matrix. Vernon, B., Kim, S.W., Bae, Y.H. J. Biomed. Mater. Res. (2000) [Pubmed]
  26. Bio-functionalized thermoresponsive interfaces facilitating cell adhesion and proliferation. Hatakeyama, H., Kikuchi, A., Yamato, M., Okano, T. Biomaterials (2006) [Pubmed]
  27. Temperature-responsive liquid chromatography. 2. Effects of hydrophobic groups in N-isopropylacrylamide copolymer-modified silica. Kanazawa, H., Kashiwase, Y., Yamamoto, K., Matsushima, Y., Kikuchi, A., Sakurai, Y., Okano, T. Anal. Chem. (1997) [Pubmed]
  28. Radiation chemical studies on thermosensitive N-isopropylacrylamide and its polymer in aqueous solutions. Acharya, A., Mohan, H., Sabharwal, S. J. Radiat. Res. (2003) [Pubmed]
  29. Detection by circular dichroism of conformational transitions in pH and thermosensitive copolymers based on N-isopropylacrylamide and N-methacryloyl-L-leucine. Lebon, F., Bignotti, F., Penco, M., Gangemi, R., Longhi, G., Abbate, S. Chirality. (2003) [Pubmed]
  30. Mimicking a cytoskeleton by coupling poly(N-isopropylacrylamide) to the inner leaflet of liposomal membranes: effects of photopolymerization on vesicle shape and polymer architecture. Stauch, O., Uhlmann, T., Fröhlich, M., Thomann, R., El-Badry, M., Kim, Y.K., Schubert, R. Biomacromolecules (2002) [Pubmed]
  31. In vitro studies on a new method for islet microencapsulation using a thermoreversible gelation polymer, N-isopropylacrylamide-based copolymer. Shimizu, S., Yamazaki, M., Kubota, S., Ozasa, T., Moriya, H., Kobayashi, K., Mikami, M., Mori, Y., Yamaguchi, S. Artificial organs. (1996) [Pubmed]
 
WikiGenes - Universities