The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Hirsutrin     2-(3,4-dihydroxyphenyl)-5,7- dihydroxy-3...

Synonyms: Isoquercetin, Isotrifoliin, Isoquercitrin, CONTIGOSIDE B, AC1NQXMB, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Hirsutrin


High impact information on Hirsutrin


Chemical compound and disease context of Hirsutrin


Biological context of Hirsutrin


Anatomical context of Hirsutrin


Associations of Hirsutrin with other chemical compounds


Gene context of Hirsutrin


Analytical, diagnostic and therapeutic context of Hirsutrin


  1. Glycosylated flavones as selective inhibitors of topoisomerase IV. Bernard, F.X., Sablé, S., Cameron, B., Provost, J., Desnottes, J.F., Crouzet, J., Blanche, F. Antimicrob. Agents Chemother. (1997) [Pubmed]
  2. Bioavailability of quercetin in pigs is influenced by the dietary fat content. Lesser, S., Cermak, R., Wolffram, S. J. Nutr. (2004) [Pubmed]
  3. Anaerobic degradation of flavonoids by Eubacterium ramulus. Schneider, H., Blaut, M. Arch. Microbiol. (2000) [Pubmed]
  4. Effects of St. John's Wort Extract and Single Constituents on Stress-Induced Hyperthermia in Mice. Grundmann, O., Kelber, O., Butterweck, V. Planta Med. (2006) [Pubmed]
  5. Lack of carcinogenicity of enzymatically modified isoquercitrin in F344/DuCrj rats. Salim, E.I., Kaneko, M., Wanibuchi, H., Morimura, K., Fukushima, S. Food Chem. Toxicol. (2004) [Pubmed]
  6. Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides. Sesink, A.L., Arts, I.C., de Boer, V.C., Breedveld, P., Schellens, J.H., Hollman, P.C., Russel, F.G. Mol. Pharmacol. (2005) [Pubmed]
  7. Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. Noroozi, M., Angerson, W.J., Lean, M.E. Am. J. Clin. Nutr. (1998) [Pubmed]
  8. Red wine alcohol promotes quercetin absorption and directs its metabolism towards isorhamnetin and tamarixetin in rat intestine in vitro. Dragoni, S., Gee, J., Bennett, R., Valoti, M., Sgaragli, G. Br. J. Pharmacol. (2006) [Pubmed]
  9. Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Day, A.J., Gee, J.M., DuPont, M.S., Johnson, I.T., Williamson, G. Biochem. Pharmacol. (2003) [Pubmed]
  10. The bioavailability of quercetin in pigs depends on the glycoside moiety and on dietary factors. Cermak, R., Landgraf, S., Wolffram, S. J. Nutr. (2003) [Pubmed]
  11. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Schneider, H., Schwiertz, A., Collins, M.D., Blaut, M. Arch. Microbiol. (1999) [Pubmed]
  12. Growth-inhibiting activity of active component isolated from Terminalia chebula fruits against intestinal bacteria. Kim, H.G., Cho, J.H., Jeong, E.Y., Lim, J.H., Lee, S.H., Lee, H.S. J. Food Prot. (2006) [Pubmed]
  13. Intestinal uptake of quercetin-3-glucoside in rats involves hydrolysis by lactase phlorizin hydrolase. Sesink, A.L., Arts, I.C., Faassen-Peters, M., Hollman, P.C. J. Nutr. (2003) [Pubmed]
  14. Degradation of quercetin-3-glucoside in gnotobiotic rats associated with human intestinal bacteria. Schneider, H., Simmering, R., Hartmann, L., Pforte, H., Blaut, M. J. Appl. Microbiol. (2000) [Pubmed]
  15. Quercetin-4'-glucoside is more potent than quercetin-3-glucoside in protection of rat intestinal mucosa homogenates against iron ion-induced lipid peroxidation. Murota, K., Mitsukuni, Y., Ichikawa, M., Tsushida, T., Miyamoto, S., Terao, J. J. Agric. Food Chem. (2004) [Pubmed]
  16. Presence of aldose reductase inhibitors in tea leaves. Sakai, I., Izumi, S.I., Murano, T., Okuwaki, S., Makino, T., Suzuki, T. Jpn. J. Pharmacol. (2001) [Pubmed]
  17. Efficacy of orally administered extract of red vine leaf AS 195 (folia vitis viniferae) in chronic venous insufficiency (stages I-II). A randomized, double-blind, placebo-controlled trial. Kiesewetter, H., Koscielny, J., Kalus, U., Vix, J.M., Peil, H., Petrini, O., van Toor, B.S., de Mey, C. Arzneimittel-Forschung. (2000) [Pubmed]
  18. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. Arts, I.C., Sesink, A.L., Hollman, P.C. J. Nutr. (2002) [Pubmed]
  19. Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. Gee, J.M., DuPont, M.S., Day, A.J., Plumb, G.W., Williamson, G., Johnson, I.T. J. Nutr. (2000) [Pubmed]
  20. Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers. Boyer, J., Brown, D., Liu, R.H. J. Agric. Food Chem. (2004) [Pubmed]
  21. The synthesis and characterization of uridine 5'-(beta-L-rhamnopyranosyl diphosphate) and its role in the enzymic synthesis of rutin. Barber, G.A., Behrman, E.J. Arch. Biochem. Biophys. (1991) [Pubmed]
  22. Flavonoids from Lycium halimifolium1. Christen, P., Kapetanidis, I. Planta Med. (1987) [Pubmed]
  23. Protection by food-derived antioxidants from UV-A1-induced photodamage, measured using living skin equivalents. Dekker, P., Parish, W.E., Green, M.R. Photochem. Photobiol. (2005) [Pubmed]
  24. Biotransformations of Quercetin and Apigenin by a Cell Suspension Culture of Cannabis sativa. Braemer, R., Tsoutsias, Y., Hurabielle, M., Paris, M. Planta Med. (1987) [Pubmed]
  25. Quantitative phytochemical analyses of six hypericum species growing in slovenia. Umek, A., Kreft, S., Kartnig, T., Heydel, B. Planta Med. (1999) [Pubmed]
  26. Enzyme-catalyzed change of antioxidants content and antioxidant activity of asparagus juice. Sun, T., Powers, J.R., Tang, J. J. Agric. Food Chem. (2007) [Pubmed]
  27. Modulation of drug transport by selected flavonoids: Involvement of P-gp and OCT? Ofer, M., Wolffram, S., Koggel, A., Spahn-Langguth, H., Langguth, P. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. (2005) [Pubmed]
  28. Lipase-catalyzed direct and regioselective acylation of flavonoid glucoside for mechanistic investigation of stable plant pigments. Nakajima, N., Ishihara, K., Itoh, T., Furuya, T., Hamada, H. J. Biosci. Bioeng. (1999) [Pubmed]
  29. Field survey of Glycyrrhiza plants in Central Asia (3). Chemical characterization of G. glabra collected in Uzbekistan. Hayashi, H., Hattori, S., Inoue, K., Khodzhimatov, O., Ashurmetov, O., Ito, M., Honda, G. Chem. Pharm. Bull. (2003) [Pubmed]
  30. Qualitative and quantitative analysis of flavonoids of the strawberry tree - Arbutus unedo L. (Ericaceae). Males, Z., Plazibat, M., Vundać, V.B., Zuntar, I. Acta pharmaceutica (Zagreb, Croatia) (2006) [Pubmed]
WikiGenes - Universities