The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Tuberin     N-[(E)-2-(4-methoxyphenyl) ethenyl]methanamide

Synonyms: Tuberin [MI], NSC-73832, NSC73832, LS-69511, NSC 7382, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of N-Formyl-T-P-methoxystyrilamine

 

Psychiatry related information on N-Formyl-T-P-methoxystyrilamine

 

High impact information on N-Formyl-T-P-methoxystyrilamine

 

Chemical compound and disease context of N-Formyl-T-P-methoxystyrilamine

 

Biological context of N-Formyl-T-P-methoxystyrilamine

  • Loss of tuberin, the product of TSC2 gene, increases mammalian target of rapamycin (mTOR) signaling, promoting cell growth and tumor development [12].
  • At the cellular level, restoration of tuberin expression caused morphological changes characterized by enlargement of the cells and increased contact inhibition [13].
  • An interaction of hamartin and tuberin can be detected in every phase of the cell cycle [14].
  • Here we show that the region of homology between tuberin and human rap1GAP and the murine GAP mSpa1 is more extensive than previously reported and spans approximately 160 amino acid residues encoded within exons 34-38 of the TSC2 gene [15].
  • Intriguingly, the TSC2 product, tuberin, has an area of sequence homology with the GTPase activating protein rap1GAP, suggesting a possible mechanism for its role in regulating cellular growth [16].
 

Anatomical context of N-Formyl-T-P-methoxystyrilamine

 

Associations of N-Formyl-T-P-methoxystyrilamine with other chemical compounds

 

Gene context of N-Formyl-T-P-methoxystyrilamine

  • Tuberin and hamartin form a complex that inhibits signaling by the mammalian target of rapamycin (mTOR), a critical nutrient sensor and regulator of cell growth and proliferation [22].
  • Hamartin and tuberin interaction with the G2/M cyclin-dependent kinase CDK1 and its regulatory cyclins A and B [23].
  • In contrast, exercise caused no change in phosphorylation of either Akt/PKB or tuberin [24].
  • Together, our data unveil a regulatory mechanism by which the Ras/MAPK and PI3K pathways converge on the tumor suppressor tuberin to inhibit its function [22].
  • Supporting this notion, TSC patient-derived Tuberin GAP domain mutants were unable to inactivate Rheb in vivo [25].
 

Analytical, diagnostic and therapeutic context of N-Formyl-T-P-methoxystyrilamine

  • We used immunohistochemistry with antibodies against p-PDK1 (S241), p-Akt (S473), p-tuberin (T1462), p-p70(S6K) (T389), p-p70(S6K) (T229) and phalloidin-staining to analyze stress fiber formation in balloon cells of FCD(IIb) (n = 23) compared with cortical tuber giant cells (n = 5) and adjacent normal CNS tissue as control [26].
  • These observations suggest either that tuberin expression is controlled at the level of both transcription and translation or the antibody and in-situ hybridization recognize different splice variants of the TSC2 gene [3].
  • We have generated antisera against the N-terminal and C-terminal portions of tuberin, and these antisera specifically recognize a 180-kDa protein in immunoprecipitation and immunoblotting analyses [27].
  • Moreover, conventional and confocal immunofluorescence demonstrated co-localization of tuberin with Rap1, which has previously been localized to the Golgi apparatus [28].
  • Indirect immunofluorescence of tuberin in various cultured cell lines revealed a punctate, mostly perinuclear staining pattern [28].

References

  1. Inactivation of the cyclin-dependent kinase inhibitor p27 upon loss of the tuberous sclerosis complex gene-2. Soucek, T., Yeung, R.S., Hengstschläger, M. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  2. Loss of tuberin from cerebral tissues with tuberous sclerosis and astrocytoma. Mizuguchi, M., Kato, M., Yamanouchi, H., Ikeda, K., Takashima, S. Ann. Neurol. (1996) [Pubmed]
  3. Localization of tuberous sclerosis 2 mRNA and its protein product tuberin in normal human brain and in cerebral lesions of patients with tuberous sclerosis. Kerfoot, C., Wienecke, R., Menchine, M., Emelin, J., Maize, J.C., Welsh, C.T., Norman, M.G., DeClue, J.E., Vinters, H.V. Brain Pathol. (1996) [Pubmed]
  4. Reduced TSC2 RNA and protein in sporadic astrocytomas and ependymomas. Wienecke, R., Guha, A., Maize, J.C., Heideman, R.L., DeClue, J.E., Gutmann, D.H. Ann. Neurol. (1997) [Pubmed]
  5. New developments in the neurobiology of the tuberous sclerosis complex. Crino, P.B., Henske, E.P. Neurology (1999) [Pubmed]
  6. Tuberin--a new molecular target in Alzheimer's disease? Ferrando-Miguel, R., Rosner, M., Freilinger, A., Lubec, G., Hengstschläger, M. Neurochem. Res. (2005) [Pubmed]
  7. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J., Cantley, L.C. Mol. Cell (2002) [Pubmed]
  8. Tuberin-dependent membrane localization of polycystin-1: a functional link between polycystic kidney disease and the TSC2 tumor suppressor gene. Kleymenova, E., Ibraghimov-Beskrovnaya, O., Kugoh, H., Everitt, J., Xu, H., Kiguchi, K., Landes, G., Harris, P., Walker, C. Mol. Cell (2001) [Pubmed]
  9. Prostaglandin E2 mediates phosphorylation and down-regulation of the tuberous sclerosis-2 tumor suppressor (tuberin) in human endometrial adenocarcinoma cells via the Akt signaling pathway. Sales, K.J., Battersby, S., Williams, A.R., Anderson, R.A., Jabbour, H.N. J. Clin. Endocrinol. Metab. (2004) [Pubmed]
  10. Antibacterial activity of N-(beta-styryl) formamides related to tuberin. Harrison, I.T., Kurz, W., Massey, I.J., Unger, S.H. J. Med. Chem. (1978) [Pubmed]
  11. Nongenomic estrogen action regulates tyrosine phosphatase activity and tuberin stability. Flores-Delgado, G., Anderson, K.D., Warburton, D. Mol. Cell. Endocrinol. (2003) [Pubmed]
  12. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. Cai, S.L., Tee, A.R., Short, J.D., Bergeron, J.M., Kim, J., Shen, J., Guo, R., Johnson, C.L., Kiguchi, K., Walker, C.L. J. Cell Biol. (2006) [Pubmed]
  13. Suppression of tumorigenicity by the wild-type tuberous sclerosis 2 (Tsc2) gene and its C-terminal region. Jin, F., Wienecke, R., Xiao, G.H., Maize, J.C., DeClue, J.E., Yeung, R.S. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  14. The TSC1 gene product, hamartin, negatively regulates cell proliferation. Miloloza, A., Rosner, M., Nellist, M., Halley, D., Bernaschek, G., Hengstschläger, M. Hum. Mol. Genet. (2000) [Pubmed]
  15. The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Maheshwar, M.M., Cheadle, J.P., Jones, A.C., Myring, J., Fryer, A.E., Harris, P.C., Sampson, J.R. Hum. Mol. Genet. (1997) [Pubmed]
  16. The molecular genetics of tuberous sclerosis. Sampson, J.R., Harris, P.C. Hum. Mol. Genet. (1994) [Pubmed]
  17. Formation of the retinotectal projection requires Esrom, an ortholog of PAM (protein associated with Myc). D'Souza, J., Hendricks, M., Le Guyader, S., Subburaju, S., Grunewald, B., Scholich, K., Jesuthasan, S. Development (2005) [Pubmed]
  18. Tuberin phosphorylation regulates its interaction with hamartin. Two proteins involved in tuberous sclerosis. Aicher, L.D., Campbell, J.S., Yeung, R.S. J. Biol. Chem. (2001) [Pubmed]
  19. Dexamethasone Represses Signaling through the Mammalian Target of Rapamycin in Muscle Cells by Enhancing Expression of REDD1. Wang, H., Kubica, N., Ellisen, L.W., Jefferson, L.S., Kimball, S.R. J. Biol. Chem. (2006) [Pubmed]
  20. Tuberin is a component of lipid rafts and mediates caveolin-1 localization: role of TSC2 in post-Golgi transport. Jones, K.A., Jiang, X., Yamamoto, Y., Yeung, R.S. Exp. Cell Res. (2004) [Pubmed]
  21. Expression profile of tuberin and some potential tumorigenic factors in 60 patients with uterine leiomyomata. Wei, J., Chiriboga, L., Mizuguchi, M., Yee, H., Mittal, K. Mod. Pathol. (2005) [Pubmed]
  22. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Roux, P.P., Ballif, B.A., Anjum, R., Gygi, S.P., Blenis, J. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  23. Hamartin and tuberin interaction with the G2/M cyclin-dependent kinase CDK1 and its regulatory cyclins A and B. Catania, M.G., Mischel, P.S., Vinters, H.V. J. Neuropathol. Exp. Neurol. (2001) [Pubmed]
  24. Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle. Williamson, D.L., Kubica, N., Kimball, S.R., Jefferson, L.S. J. Physiol. (Lond.) (2006) [Pubmed]
  25. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Tee, A.R., Manning, B.D., Roux, P.P., Cantley, L.C., Blenis, J. Curr. Biol. (2003) [Pubmed]
  26. Differential Pi3K-pathway Activation in Cortical Tubers and Focal Cortical Dysplasias with Balloon Cells. Schick, V., Majores, M., Engels, G., Hartmann, W., Elger, C.E., Schramm, J., Schoch, S., Becker, A.J. Brain Pathol. (2007) [Pubmed]
  27. Identification of tuberin, the tuberous sclerosis-2 product. Tuberin possesses specific Rap1GAP activity. Wienecke, R., König, A., DeClue, J.E. J. Biol. Chem. (1995) [Pubmed]
  28. Co-localization of the TSC2 product tuberin with its target Rap1 in the Golgi apparatus. Wienecke, R., Maize, J.C., Shoarinejad, F., Vass, W.C., Reed, J., Bonifacino, J.S., Resau, J.H., de Gunzburg, J., Yeung, R.S., DeClue, J.E. Oncogene (1996) [Pubmed]
 
WikiGenes - Universities